
Algorithms for computing neutrino oscillation probabilities in sharply varying
matter potentials such as the Earth are becoming increasingly important. As the
next generation of experiments, DUNE and HyperK as well as the IceCube
upgrade and KM3NeT, come online, the computational cost for atmospheric and
solar neutrinos will continue to increase. To address these issues, we expand upon
our previous algorithm for long-baseline calculations to efficiently handle
probabilities through the Earth for atmospheric, nighttime solar, and supernova
neutrinos. The algorithm is fast, flexible, and accurate. It can handle arbitrary
Earth models with two different schemes for varying density profiles. We also
provide a c++ implementation of the code called NuFast-Earth along with a
detailed user manual. The code intelligently keeps track of repeated calculations
and only recalculates what is needed on each successive call which can also help
provide significant speed-ups.
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The Problem
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Many Approaches

Modify vacuum probabilities

▶ Get the eigenvalues by solving the cubic
Cardano 1545

V. Barger, et al. PRD 22 (1980) 2718

▶ Get the eigenvectors
H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273

K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295
PBD, S. Parke, X. Zhang 1907.02534

A. Abdulahi, S. Parke 2212.12565

Advantage: can use existing intuition about the parameters
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Atmospheric/Solar: Many Approaches

Solve the Schrödinger equation

i
d

dt
|ν⟩ = H(t)|ν⟩

For region j where H is approximately constant: Hj (constant density)

Aj = e−iHjLj P (να → νβ) =

∣∣∣∣∣∣
∏

j

Aj


βα

∣∣∣∣∣∣
2

Exponential requires computing eigenvalues and eigenvectors of Hj ,
for good precision through the Earth, repeat this many times
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FNAL Newsroom
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Monte-Carlo Estimates of Statistical Significances

Wilks’ theorem is often wrong
At each point in parameter space, simulate the experiment many times

“many” means ≫ 1/p for a desired p-value

This is sometimes called Feldman-Cousins
G. Feldman, R. Cousins physics/9711021

This isn’t actually what was novel in the FC paper

Study found most of
the time was spent
computing probabilities

NOvA/T2K are ∼ 3σ experiments,
but DUNE/HK will be ≳ 5σ experiments!

DUNE sensitivities require computing
the probabilities “a zillion times”
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How to Achieve Speed

1. Avoid costly operations
▶ sin, cos (and inverse functions) are very slow
▶ sqrt is quite slow, but not as bad as trigs
▶ Division is slower than multiplication (0.2x may be faster than x/5)
▶ Avoid complex numbers: addition: 2×, multiplication: 4×, division: > 8×

2. Reduce repeated calculations
▶ Compute L

4E in the correct units once

▶ Compute each of the three sin
∆m2

ijL

4E once

3. Don’t perform unnecessary linear algebra computations

All of these are compiler dependent
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Eigenvalues are Hard

The eigenvalues in matter λi depend on S (and other things):

S = cos

{
1

3
cos−1

[
2A3 − 9AB + 27C

2 (A2 − 3B)3/2

]}
Cardano 1545

where

A =
∑

λi = ∆m2
21 +∆m2

31 + a

B =
∑
i>j

λiλj = ∆m2
21∆m2

31 + a[∆m2
21(1− |Ue2|2) + ∆m2

31(1− |Ue3|2)]

C =
∏

λi = a∆m2
21∆m2

31|Ue1|2
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Approximate Eigenvalues

1. Instead, approximate one eigenvalue
▶ λ3 is best because is never parametrically small and easy to approximate

2. From DMP:

λ3 ≈ ∆m2
31 +

1

2
∆m2

ee

(
x− 1 +

√
(1− x)2 + 4xs213

)
x ≡ a

∆m2
ee

∆m2
ee ≡ ∆m2

31 − s212∆m2
21

H. Minakata, S. Parke 1505.01826
PBD, H. Minakata, S. Parke 1604.08167

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

3. Get other two eigenvalues by picking two of A, B, C conditions
Requires one more

√
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The Approximation

▶ This is the only approximation used in the entire approach

▶ In vacuum the approximation returns to the correct value
Many approximations in the literature are not correct in vacuum limit

See G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517

▶ In fact can iteratively improve λ3 with rapid convergence via Newton’s
method:

λ3 → λ3 −
X(λ3)

X ′(λ3)

X(λ) = λ3 −Aλ2 +Bλ− C = 0

▶ Precision improvement starts at 10−5 for the first step
▶ The improvement is quadratic thereafter

▶ One line of code, just loop as many times as desired
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Optimal Structure of the Probability for Atmospherics

1. Cannot apply the long-baseline tricks through the Earth

2. Must compute the amplitude in each layer∏
j

Aj
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Optimal Structure of the Probability for Atmospherics
3. Work in the tilde basis with θ23 and δ pulled out

▶ Can shift δ from θ13 to θ231
c23 s23
−s23 c23

 c13 s13e
−iδ

1
−s13e

iδ c13

R12 →

1
c23 s23e

iδ

−s23e
−iδ c23

 c13 s13
1

−s13 c13

R12

▶ U23 commutes with the matter potential

(2E)Hf = U23(θ23, δ)

R13R12

0
∆m2

21

∆m2
31

RT
12R

T
13 +

a
0

0

U†
23(θ23, δ)

Hf = U23(θ23, δ)H̃U†
23(θ23, δ)

A =
∏
j

Aj =
∏
j

e−iHf,jLj = U23(θ23, δ)

∏
j

e−iH̃jLj

U†
23(θ23, δ)

U23U
†
23 = 1

H̃ is real! And doesn’t depend on θ23 or δ
Reduces many unnecessary computations
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Further Reductions

▶ Calculate eigenvalues λi: exactly or approx with Newton corrections
Same as in NuFast-LBL

▶ Further unitarity reductions:

Aαβ = δαβ + Vα2V
∗
β2(e

−i∆λ21L/(2E) − 1) + Vα3V
∗
β3(e

−i∆λ31L/(2E) − 1)

▶ In the tilde basis, the Ṽ Ṽ ∗ terms are real

▶ Use adjugate matrices and advanced Eigenvector-Eigenvalue Identity
PBD, S. Parke, T. Tao, X. Zhang 1908.03795

A. Abdulahi, S. Parke 2212.12565

ṼαiṼβi =
Adj[λi1− (2E)H̃]∏

k ̸=i(λi − λk)
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Earth Trajectories
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▶ Various Earth density profiles

▶ Varying or constant density in each shell

Trajectory goes from:

1. Production height to surface

2. Surface to detector depth

3. Detector depth to deepest point

4. Deepest point to detector depth:
this is the transpose of #3
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Example Earth Model
Many Earth models coded up

▶ PREM NDiscontinuityLayer takes four integers
indicating the number of layers in each major region:
inner core, outer core, inner mantle, and outer mantle
PREM NDiscontinuityLayer earth density(2, 10,

10, 5);

Can also take one integer and apply
that to each of the four regions

▶ PREM NUniformLayer takes one integer splitting the
whole Earth into N layers

Can struggle near sharp boundaries

▶ PREM Prob3 Four constant layers matching prob3 code

▶ PREM Full Uses averaging across major regions

▶ PREM Four Same as PREM Full but only has four total
regions ignoring the small fluctuations near the surface
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Two Earth Model Calculation Techniques

Constant shells:

1. Contains some number of discrete
layers

2. Eigenvalue and eigenvector
computations: Nlayer ×NE

3. Good if there are many energy and
zenith angles

Averaging over varying shells:

1. (Typically) uses only several (4 or 10)
major regions

2. Computes the average density in each
region for each trajectory

3. Handles the fact that e.g. a trajectory
through the middle of the core sees a
larger average inner core density than
one that skims the inner core

4. Eigenvalue and eigenvector
computations: Nlayer ×NE ×Ncos θz

But may achieve accuracy with smaller Nlayer?

In general we find that the averaging approach is not beneficial
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Atmospheric Results: NO
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Atmospheric Results: IO
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Atmospheric Results: Detector Depth: NO
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Atmospheric Results: Detector Depth: IO
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Atmospheric Results: Detector Depth: Summary

max |∆P | νµ → νµ νµ → νe
ν ν̄ ν ν̄

NO 5.1% 5.1% 1.5% 0.2%

IO 5.4% 5.4% 0.3% 1.5%
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NuFast-Earth Solar Neutrino Validation
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Analytically understand the small deviation at high energy

Peter B. Denton (BNL) 2511.04735 DUNE A&E WG: February 4, 2026 23/33

https://peterdenton.github.io
https://arxiv.org/abs/2511.04735


Nighttime Solar Neutrinos

At night solar neutrinos experience partial regeneration:
There are more νe’s from the Sun at night than during the day!

SuperK has ∼ 2σ evidence for this effect; DUNE and HK aim to measure it well
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Solar and Supernova Neutrinos

We compute and provide code for:

▶ The Hamiltonian at a given production density
▶ This is just the eigenvectors at the Sun’s density
▶ From here it is trivial to compute the day time solar neutrino oscillation

probability

▶ The nighttime probability

▶ The annual averaged weight function

We do not provide code for:

▶ The solar model

Supernova neutrinos through the Earth

▶ Set production density very high: Set rhoYe Sun(1e6)
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NuFast-Earth Precision
Two approximations: Eigenvalues Earth model

0 1 2
NNR
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“True” has exact eigenvalues and 1M layers
Calculate |∆P | across 100× 100 grid in energy and angle
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NuFast-Earth Speed

Cardano 0 1 2
Eigenvalue Precision: NNR
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-Ofast

∆m2
31

θ23

nuSQuIDS takes >1M ns per trajectory
C. Argüelles, J. Salvado, C. Weaver 2112.13804

OscProb takes 40 000 ns per trajectory at 44 layers (compare to 6000 ns or 200 ns)
J. Coelho, R. Pestes, et al. github.com/joaoabcoelho/OscProb

Other codes are designed with different goals in mind
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NuFast-Earth Speed Example of Caching

Ingredients

1. 44 layer Earth

2. Single core-crossing trajectory: cos θz = −1

3. 100 ∆m2
31 points and 100 θ23 points

Run time:

1. OscProb:
100× 100× (4× 104 ns) = 0.4 s

2. NuFast-Earth wrong order (loop ∆m2
31 first):

100× 99× (6× 103 ns) + 100× (2× 102 ns) = 0.06 s

3. NuFast-Earth right order (loop θ23 first):
100× (6× 103 ns) + 100× 99× (2× 102 ns) = 0.002 s
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NuFast-Earth Speed: Grid

Number of eigenvalue and eigenvector computations: Nlayer ×NE

Time per Earth layer for one core-crossing
trajectory:

▶ 100 energy by 1 zenith grid (solid)

▶ 100 zenith by 1 energy grid (dashed)
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cos θz

Zenith angle bins ∼ 2× faster than energy bins

Cost of computing eigenvalues and eigenvectors comparable to converting to
amplitudes and multiplying matrices (which also depend on L and thus cos θz)
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NuFast-Earth Fast Parameters

Four fast parameters for insides of loops:

▶ θ23: Set s23sq

▶ δ: Set delta

▶ Production height: Set Production Height

▶ Density at production in Sun/supernova: Set rhoYe Sun

Also zenith grid points are ∼ 2× faster than energy grid points
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NuFast-Earth Flow

Set_Spectra Probability_Engine
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Zenith
angles

Set_Oscillation_
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Calculate_Probabilities
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s13sq
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Dashed boxes = fast!
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NuFast-Earth Recommendations

Many choices in how to use NuFast-Earth
What is the best way for most cases?

1. Eigenvalue precision: set the number of Newton-Raphson corrections to 1
probability engine.Set Eigenvalue Precision(1);

2. Earth model for typical run: 2, 10, 10, 5 layers in each of the four main zones
PREM NDiscontinuityLayer earth density(2, 10, 10, 5);

3. Looping order: put θ23, δ, and production height on the innermost loops

4. More zenith and fewer energy grid points to achieve desired precision
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Summary

▶ Computing neutrino oscillations fast is important

▶ Atmospheric code is fast, if implemented correctly
θ23, δ, production height, Sun/SN density are key “fast” parameters

▶ Approximate λ3 and rapid convergence, if desired
▶ Get all eigenvalues from λ3 via A, B, C
▶ Pull out θ23 and δ for caching
▶ Use adjugate algorithm for eigenvectors
▶ Structure the Earth trajectory carefully
▶ Speed up of 2-3 orders of magnitude

LBL code is already implemented by Daniel Barrow in
NuOscillator → MaCh3 & GUNDAM
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Backups
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Scope

1. All 9 channels (να → νβ)
▶ Atmospherics include ντ appearance
▶ ντ → νβ channels are not needed, but come from free from unitarity

2. Different energies, zenith angles, and Earth models

3. Production height, detector depth

4. ν and ν̄

5. NO and IO

6. Oscillation parameters are mostly known
▶ Don’t need to consider e.g. ∆m2

21 > |∆m2
31| or θ23 ∼ 10◦
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All 9 Channels

Given Pee, Pµµ, P
TC
µe , and P TV

µe :

Pαe Pαµ Pατ

Peβ Pee P TC
µe − P TV

µe 1− Pee − P TC
µe + P TV

µe

Pµβ P TC
µe + P TV

µe Pµµ 1− Pµµ − P TC
µe − P TV

µe

Pτβ 1− Pee − P TC
µe − P TV

µe 1− Pµµ − P TC
µe + P TV

µe −1 + Pee + Pµµ + 2P TC
µe
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Optimal Structure of the Probability for Long-Baseline

1. Amplitude requires four trig functions of kinematic variables (∆m2
ijL/4E) ×

2. Writing the probabilities out requires three trig functions ✓

3. Disappearance structure is straightforward:

Pαα = 1− 4
∑
i>j

|Vαi|2|Vαj |2 sin2
∆λijL

4E

H in matter has eigenvalues λi and eigenvectors Vαi
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Optimal Structure of the Probability for Long-Baseline
4. Appearance structure:

T conserving:

P TC
µe = 2

∑
i>j

(|Vτk|2 − |Vµi|2|Vej |2 − |Vµj |2|Vei|2) sin2
∆λijL

4E

Fun fact:
2ℜ(VαiV

∗
βjV

∗
αjVβi)

= |Vαk|2|Vβk|2 − |Vαi|2|Vβi|2 − |Vαj |2|Vβj |2
= |Vγk|2 − |Vαi|2|Vβj |2 − |Vαj |2|Vβi|2

T violating:

P TV
µe = −8J

∆m2
21∆m2

31∆m2
32

∆λ21∆λ31∆λ32
sin

∆λ21L

4E
sin

∆λ31L

4E
sin

∆λ32L

4E

C. Jarlskog PRL 55, 1039 (1985)

Leverages NHS identity:
V. Naumov IJMP 1992

P. Harrison, W. Scott hep-ph/9912435
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Account for Matter in Long-Baseline

1. Need the eigenvalues λi

2. For eigenvectors, naively need ℜ(VαiV
∗
βjV

∗
αjVβi)

3. Given our form, need only the |Vαi|2 and J in vacuum
▶ Don’t need any phase information of the eigenvectors!

Leverages PBD, S. Parke, X. Zhang 1907.02534

4. Can compute the |Vαi|2 from the λi and submatrix eigenvalues (requires only
a square root) using Eigenvector-Eigenvalue Identity

|Vαi|2 =
∏n−1

k=1(λi − ξαk )∏n
k=1;k ̸=i(λi − λk)

See e.g. PBD, S. Parke, T. Tao, X. Zhang 1908.03795
Can actually avoid the

√
in practice
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Total LBL Approach

1. Inputs: 6 oscillation parameters, experimental details (L, E, ρ, Ye)

2. Calculate λ3 approximately
▶ Iteratively improve with Newton’s method, if desired

3. Calculate the |Vαi|2’s with the Eigenvector-Eigenvalue Identity

4. Calculate the sines of the kinematic terms

5. Calculate the T violating term with the NHS identity

6. Calculate key probabilities: Pee, Pµµ, and Pµe

7. Calculate remaining probabilities
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LBL Precision

Is this approximation okay?
DUNE requires ≲ 1% level precision
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Slightly better for HK
∼ 10−10 for JUNO

See backups
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LBL Speed

Is this algorithm fast?
How does it compare?
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▶ “Conservative” = default, -O0
▶ “Aggressive” = -Ofast and -ffast-math

▶ Some variation expected due to architecture See also J. Page 2309.06900
and P. Huber, et al. hep-ph/0701187
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NuFast-LBL: the Code
▶ Code is on github: github.com/PeterDenton/NuFast-LBL

▶ Implementations in c++ and f90

▶ Easy to use and there are comments!

▶ ν̄: E < 0; IO: ∆m2
31 < 0

▶ Folder called Benchmarks to make the plots in the paper

▶ Used in NuOscillator, MaCh3, and GUNDAM
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NuFast-Earth LBL Validation
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Precision
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Comparison to DMP

1 2 3 4 5
E [GeV]

10−12

10−10

10−8

10−6

10−4

10−2

10−11

10−9

10−7

10−5

10−3

∆
P
/P

L = 1300 km
ρ = 3 g/cc
DUNE

Pµµ

Pµe

NuFast(0)

DMP0
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