
The best way to probe CP violation in the lepton sector is with long-baseline
accelerator neutrino experiments in the appearance mode. I will show that it is
possible to discover CP violation with disappearance experiments only, by
combining JUNO for electron neutrinos and DUNE or Hyper-Kamiokande for
muon neutrinos. While the maximum sensitivity to discover CP is quite modest,
some values of δ may be disfavored by > 3σ depending on the true value of δ.

Neutrino oscillation experiments will be entering the precision era in the next
decade. Correctly estimating the confidence intervals from data for the oscillation
parameters requires very large Monte Carlo data sets involving calculating the
oscillation probabilities in matter many, many times. In this talk, I will leverage
past work to present a new, fast, precise technique for calculating neutrino
oscillation probabilities in matter optimized for long-baseline neutrino oscillations
called NuFast. I will also present recent results for atmospheric and solar
neutrinos.
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Four Known Unknown in Particle Physics: All Neutrinos

Atmospheric mass ordering

θ23 octant

Complex phase

Absolute mass scale
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Why is CPV interesting?
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δ and CP Violation

JCP = s12c12s13c
2
13s23c23 sin δ

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM ⇒ CP (nearly) conserved

θ̄

2π
< 10−11

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

|JCKM|
Jmax

= 3× 10−4

CKMfitter 1501.05013

3. Lepton mass matrix: ?
|JPMNS|
Jmax

< 0.34

PBD, J. Gehrlein, R. Pestes 2008.01110

Jmax = 1
6
√
3
≈ 0.096
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δ, J : Current Status

Maximal CP violation is already ruled out:

1. θ12 ̸= 45◦ at ∼ 15σ

2. θ13 ̸= tan−1 1√
2
≈ 35◦ at many (100) σ

3. θ23 = 45◦ allowed at ∼ 1σ

4. | sin δ| = 1 allowed

Unitarity
100%

allowed

+SNO
+Kam
LAND
91%

allowed

+Daya
Bay

+RENO

34%
allowed

+NOvA
+T2K

26%
allowed

Jmax= 1

6
√

3

≈ 0.096

Denton
2020

CP
conserving
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When δ and When J?

If the goal is CP violation the Jarlskog invariant should be used

however

If the goal is measuring the parameters one must use δ

Given θ12, θ13, θ23, and J , I can’t determine the sign of cos δ which is physical
e.g. P (νµ → νµ) depends on cos δ

Peter B. Denton (BNL) 2309.03262 Oxford: January 15, 2026 8/52

https://peterdenton.github.io
https://arxiv.org/abs/2309.03262


Other Non-standard CPV Probes

1. Some information in solar due to loops in elastic scattering
V. Brdar, X-J. Xu 2306.03160

K. Kelly, et al. 2407.03174 requires 3k Borexinos

2. Sub-GeV → sub-100 MeV atmospherics
K. Kelly, et al. 1904.02751

See also e.g. A. Suliga, J. Beacom 2306.11090
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CP, T: Disappearance

νe → νe → CP → ν̄e → ν̄e

↘ ↓
CPT T

↘ ↓
ν̄e → ν̄e

Disappearance measurements are even eigenstates of CP

CP [P (νe → νe)] = P (ν̄e → ν̄e)
CPT
= P (νe → νe)

Assume that CPT is a good symmetry
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CP, T: Appearance

νµ → νe → CP → ν̄µ → ν̄e

↘ ↓
CPT T

↘ ↓
ν̄e → ν̄µ

Appearance measurements are not eigenstates of CP
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Appearance, Disappearance, and CP
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Appearance and Disappearance, CP Even and CP Odd Terms
Disappearance:

P (να → να) = 1− 4|Uα1|2|Uα2|2 sin2∆21

− 4|Uα1|2|Uα3|2 sin2∆31

− 4|Uα2|2|Uα3|2 sin2∆32

= PCP+
αα

Appearance:

P (να → νβ) =− 4ℜ[Uα1U
∗
β1U

∗
α2Uβ2] sin

2∆21

− 4ℜ[Uα1U
∗
β1U

∗
α3Uβ3] sin

2∆31

− 4ℜ[Uα3U
∗
β3U

∗
α2Uβ2] sin

2∆32

± 8JCP sin∆21 sin∆31 sin∆32

= PCP+
αβ + PCP−

αβ

∆ij ≡ ∆m2
ijL/4E

Sign depends on α, β
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Conventional Wisdom

1. Appearance is sensitive to CPV [True]

2. Disappearance has no CPV sensitivity [False]

3. Any CPV or δ dependence in disappearance is in νµ not νe [Confusing/False]

UPDG =




c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13
s23s12 − c23s13c12e

iδ −s23c12 − c23s13s12e
iδ c23c13




Can reparameterize so that any row/column is “simple”
PBD, R. Pestes 2006.09384
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Correct Statements

▶ Appearance is the best way to measure δ and CPV
. . . given known oscillation parameters, systematics, and realistic experiments

▶ Probes mostly sin δ not cos δ
▶ Don’t need both ν and ν̄ (but systematics)

▶ Disappearance can measure δ
▶ CPV can be discovered with only disappearance measurements
▶ Probes mostly cos δ not sin δ
▶ Requires measurements of two flavors
▶ “Works through unitarity” (as do nearly all oscillation measurements)

Peter B. Denton (BNL) 2309.03262 Oxford: January 15, 2026 15/52

https://peterdenton.github.io
https://arxiv.org/abs/2309.03262


Parameter Counting
1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

2. Disappearance experiments of one flavor can measure up to three amplitudes
▶ Electron neutrino row:

▶ KamLAND/SNO+/JUNO measured one
▶ Daya Bay/RENO measured a different one
▶ JUNO will measure all three

▶ Muon neutrino row:
▶ MINOS/T2K/NOνA measured one

3. Only two parameters for one flavor are independent
4. Given good measurements of the νe and νµ disappearance, 4 independent

parameters will be measured
▶ Any row can be “simple” (e.g. c12c13, s12c13, . . . ) ⇒ no one row is ever enough
▶ That is, CPV is physical and cannot depend on parameterization

5. This is sufficient to constrain cos δ and three mixing angles
6. If we determine cos δ ̸= ±1 ⇒ CP is violated!

P (να → να) = 1− 4
∑

i>j

Cα
ij sin

2∆ij

∆ij ≡ ∆m2
ijL/4E

Cα
ij = |Uαi|2|Uαj |2

|Uαi| =
(
Cα
ijC

α
ik

Cα
jk

)1/4
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Parameter Counting
1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

2. Disappearance experiments of one flavor can measure up to three amplitudes
▶ Electron neutrino row:

▶ KamLAND/SNO+/JUNO measured one
▶ Daya Bay/RENO measured a different one
▶ JUNO will measure all three

▶ Muon neutrino row:
▶ MINOS/T2K/NOνA measured one

3. Only two parameters for one flavor are independent
4. Given good measurements of the νe and νµ disappearance, 4 independent

parameters will be measured
▶ Any row can be “simple” (e.g. c12c13, s12c13, . . . ) ⇒ no one row is ever enough
▶ That is, CPV is physical and cannot depend on parameterization

5. This is sufficient to constrain cos δ and three mixing angles
6. If we determine cos δ ̸= ±1 ⇒ CP is violated!
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Direct Analytic Calculation

Disappearance experiments measure various |Uαi|2 terms
Suppose 4 are measured: |Ue2|2, |Ue3|2, |Uµ2|2, |Uµ3|2

Actually this gives all 9 magnitudes by unitarity

J2
CP = |Ue2|2|Uµ2|2|Ue3|2|Uµ3|2

− 1

4

(
1− |Ue2|2 − |Uµ2|2 − |Ue3|2 − |Uµ3|2 + |Ue2|2|Uµ3|2 + |Ue3|2|Uµ2|2

)2

Disappearance can tell us if CP is violated,
but not if Nature prefers ν’s or ν̄’s

Can show that if any one |Uαi|2 = 0 ⇒ J = 0
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Where is |Uµ2|2?
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Approximate Size of |Uµ2|2 Signal: (21) Sector
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▶ There is no δ information in |Uµ1|2 + |Uµ2|2 (sum of ∆31 and ∆32 terms)

▶ There is δ information in |Uµ1|2|Uµ2|2
▶ This comes from the ∆m2

21 term
DUNE and HK can measure ∆m2

21 somewhat
PBD, J. Gehrlein 2302.08513

▶ This term is

Pµµ ⊃ −4c223
(
s212c

2
12 + s23c23s13 sin 2θ12 cos 2θ12 cos δ

)
sin2∆21

≈ −2 (0.21 + 0.03 cos δ)
( π

33

)2

∆m2
21/|∆m2

31| ≈ 33

▶ So the probability is large for cos δ = −1?

Sign is wrong

▶ So the effect is ∼ −0.0005 cos δ?

Magnitude is ∼ 16 too small
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Matter Effects Matter: (21) Sector
▶ Let’s start at

Pµµ ⊃ −4c223
(
s212c

2
12 + s23c23s13 sin 2θ12 cos 2θ12 cos δ

)
sin2∆21

▶ Solar splitting in matter modified by

∆m2
21 → ∆m2

21S⊙

S⊙ ≈
√
(cos 2θ12 − c213a/∆m2

21)
2 + sin2 2θ12 ≈ 3.4

at E = 1.3 GeV
PBD, S. Parke 1902.07185▶ Mixing angle is modified

cos 2θ12 = 0.37 → cos 2θ12 − c213a/∆m2
21

S⊙
≈ −0.96 < 0

a ∝ ρE▶ So the sign is swapped

sin 2θ12 cos 2θ12 = 0.35 → −0.26

▶ Also s13 increases in matter ∼ 15%: total effect is 0.004 cos δ
▶ This gets us half of the effect, and the correct sign
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sin2∆21

▶ Solar splitting in matter modified by

∆m2
21 → ∆m2

21S⊙

S⊙ ≈
√
(cos 2θ12 − c213a/∆m2

21)
2 + sin2 2θ12 ≈ 3.4

at E = 1.3 GeV
PBD, S. Parke 1902.07185▶ Mixing angle is modified

cos 2θ12 = 0.37 → cos 2θ12 − c213a/∆m2
21

S⊙
≈ −0.96 < 0

a ∝ ρE▶ So the sign is swapped

sin 2θ12 cos 2θ12 = 0.35 → −0.26

▶ Also s13 increases in matter ∼ 15%: total effect is 0.004 cos δ

▶ This gets us half of the effect, and the correct sign
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Matter Effects Matter: (32) Sector

▶ ∆m2
µµL

4E in matter at Pmax is ∼ π
H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

PBD, S. Parke 2401.10326

▶ The ∆m2
32 component is a bit off π at Pmax

▶ Leading order in s13:

≈−4s223(c
2
12c

2
23 −2s13s12c12s23c23 cos δ) sin

2∆32

≈−2 (0.0094 −0.023 cos δ)0.1 (matter)

▶ Adds in another ≈ 0.004 cos δ effect

▶ Total is ≈ 0.008 cos δ which agrees with numerical calculation

∼ 1% effect
Matter effect shifts the numbers
Numerous subtle effects in play
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Numerical Studies

Inputs are only :

▶ Daya Bay data for θ13 1809.02261

▶ KamLAND data for θ12 and ∆m2
21 1303.4667

▶ JUNO 6 yrs precision sensitivity on θ12, ∆m2
21, ∆m2

31 2204.13249

▶ DUNE 6.5+6.5 yrs disappearance channels sensitivity only 2103.04797

Also looked at varying JUNO’s and DUNE’s runtime, and at HK
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JUNO and DUNE Disappearance Sensitivities
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JUNO and HK Disappearance Sensitivities
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NuFast-LBL
A fast code for long-baseline

neutrino oscillation probabilities in matter
github.com/PeterDenton/NuFast-LBL

NuFast-Earth
A fast code for neutrino oscillations through the Earth from the

atmosphere, the Sun, or a supernova
github.com/PeterDenton/NuFast-Earth

2405.02400 & 2511.04735 with S. Parke
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The Problem

Fundamental parameters Physical observables

∆m2
21, ∆m2

31

s223, s
2
13, s

2
12

δ

⇒
in matter
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Many Approaches

Solve the Schrödinger equation

i
d

dt
|ν⟩ = H(t)|ν⟩

If H(t) = H (constant density)

A(να → νβ) =
[
e−iHL

]
βα

P = |A|2

Exponential requires computing eigenvalues and eigenvectors of H
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Many Approaches

Modify vacuum probabilities

▶ Get the eigenvalues by solving the cubic
Cardano 1545

V. Barger, et al. PRD 22 (1980) 2718

▶ Get the eigenvectors
H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273

K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295
PBD, S. Parke, X. Zhang 1907.02534

A. Abdulahi, S. Parke 2212.12565
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FNAL Newsroom
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Monte-Carlo Estimates of Statistical Significances

Wilks’ theorem is often wrong
At each point in parameter space, simulate the experiment many times

“many” means ≫ 1/p for a desired p-value

This is sometimes called Feldman-Cousins
G. Feldman, R. Cousins physics/9711021

This isn’t actually what was novel in the FC paper

Study found most of
the time was spent
computing probabilities

NOvA/T2K are ∼ 3σ experiments,
but DUNE/HK will be ≳ 5σ experiments!

DUNE sensitivities require computing
the probabilities “a zillion times”
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How to Achieve Speed

1. Avoid costly operations
▶ sin, cos (and inverse functions) are very slow
▶ sqrt is quite slow, but not as bad as trigs
▶ Division is slower than multiplication (0.2x may be faster than x/5)

2. Avoid complex numbers as possible

3. Reduce repeated calculations
▶ Compute L

4E in the correct units once

▶ Compute each of the three sin
∆m2

ijL

4E once

4. Don’t perform unnecessary linear algebra computations

All of these are compiler dependent
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Optimal Structure of the Probability for Long-Baseline

1. Amplitude requires four trig functions of kinematic variables (∆m2
ijL/4E) ×

2. Writing the probabilities out requires three trig functions ✓

3. Disappearance structure is straightforward:

Pαα = 1− 4
∑

i>j

|Vαi|2|Vαj |2 sin2
∆λijL

4E

H in matter has eigenvalues λi and eigenvectors Vαi
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Optimal Structure of the Probability for Long-Baseline
4. Appearance structure:

T conserving:

P TC
µe = 2

∑

i>j

(|Vτk|2 − |Vµi|2|Vej |2 − |Vµj |2|Vei|2) sin2
∆λijL

4E

Fun fact:
2ℜ(VαiV

∗
βjV

∗
αjVβi)

= |Vαk|2|Vβk|2 − |Vαi|2|Vβi|2 − |Vαj |2|Vβj |2
= |Vγk|2 − |Vαi|2|Vβj |2 − |Vαj |2|Vβi|2

T violating:

P TV
µe = −8J

∆m2
21∆m2

31∆m2
32

∆λ21∆λ31∆λ32
sin

∆λ21L

4E
sin

∆λ31L

4E
sin

∆λ32L

4E

Leverages NHS identity:
V. Naumov IJMP 1992

P. Harrison, W. Scott hep-ph/9912435
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Account for Matter in Long-Baseline

1. Need the eigenvalues λi

2. For eigenvectors, naively need ℜ(VαiV
∗
βjV

∗
αjVβi)

3. Given our form, need only the |Vαi|2 and J
▶ Don’t need any phase information of the eigenvectors!

Leverages PBD, S. Parke, X. Zhang 1907.02534

4. Can compute the |Vαi|2 from the λi and submatrix eigenvalues (requires only
a square root) using Eigenvector-Eigenvalue Identity

|Vαi|2 =
∏n−1

k=1(λi − ξαk )∏n
k=1;k ̸=i(λi − λk)

See e.g. PBD, S. Parke, T. Tao, X. Zhang 1908.03795
Can actually avoid the

√
in practice
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Eigenvalues are Hard

The eigenvalues in matter λi depend on S:

S = cos

{
1

3
cos−1

[
2A3 − 9AB + 27C

2 (A2 − 3B)3/2

]}

where

A =
∑

λi = ∆m2
21 +∆m2

31 + a

B =
∑

i>j

λiλj = ∆m2
21∆m2

31 + a[∆m2
21(1− |Ue2|2) + ∆m2

31(1− |Ue3|2)]

C =
∏

λi = a∆m2
21∆m2

31|Ue1|2
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Approximate Eigenvalues

1. Instead, approximate one eigenvalue
▶ λ3 is best because is never parametrically small and easy to approximate

2. From DMP:

λ3 ≈ ∆m2
31 +

1

2
∆m2

ee

(
x− 1 +

√
(1− x)2 + 4xs213

)

x ≡ a

∆m2
ee

∆m2
ee ≡ ∆m2

31 − s212∆m2
21

H. Minakata, S. Parke 1505.01826
PBD, H. Minakata, S. Parke 1604.08167

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

3. Get other two eigenvalues by picking two of A, B, C conditions
Requires one more

√
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The Approximation

▶ This is the only approximation used in the entire approach

▶ In vacuum the approximation returns to the correct value
Many approximations in the literature are not correct in vacuum limit

See G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517

▶ In fact can iteratively improve λ3 with rapid convergence via Newton’s
method:

λ3 → λ3 −
X(λ3)

X ′(λ3)

X(λ) = λ3 −Aλ2 +Bλ− C = 0

▶ Precision improvement starts at 10−5 for the first step
▶ The improvement is quadratic thereafter

▶ One line of code, just loop as many times as desired
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NuFast-LBL Precision

Is this approximation okay?
DUNE requires ≲ 1% level precision

1 2 3 4 5
E [GeV]

10−12

10−10

10−8

10−6

10−4

10−2
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10−9

10−7

10−5

10−3

∆
P
/P

L = 1300 km
ρ = 3 g/cc
DUNE

Pµµ

Pµe

NNewton = 0

NNewton = 1

Slightly better for HK
∼ 10−10 for JUNO

See backups
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NuFast-LBL Speed

Is this algorithm fast?
How does it compare?

1500

1600
Language Compiler options

fortran

c++

aggressive

conservative

0

100

200

300

400

500

t
[n

s]

Vacuum
NuFast(0) NuFast(1)

NuFast(exact)

Page

GLoBES

i7

▶ “Conservative” = default, -O0
▶ “Aggressive” = -Ofast and -ffast-math

▶ Some variation expected due to architecture See also J. Page 2309.06900
and P. Huber, et al. hep-ph/0701187
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NuFast-LBL: The Code
▶ Code is on github: github.com/PeterDenton/NuFast-LBL

▶ Implementations in c++ and f90

▶ ν̄: E < 0; IO: ∆m2
31 < 0

▶ Folder called Benchmarks to make the plots and speed tests in the paper

▶ Used in NuOscillator, MaCh3, GUNDAM, and theory papers

▶ Speed up of ≳ 5× over state-of-the-art in realistic usage
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Optimal Structure of the Probability for Atmospherics

1. Cannot apply the previous tricks through the Earth

2. Must compute the amplitude in Each layer

∏

j

Aj
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Optimal Structure of the Probability for Atmospherics
3. Work in the tilde basis with θ23 and δ pulled out

▶ Can shift δ from θ13 to θ23



1

c23 s23
−s23 c23






c13 s13e
−iδ

1
−s13e

iδ c13


R12 →



1

c23 s23e
iδ

−s23e
−iδ c23






c13 s13
1

−s13 c13


R12

▶ U23 commutes with the matter potential

(2E)Hf = U23(θ23, δ)


R13R12



0

∆m2
23

∆m2
31


RT

12R
T
13 +



a

0
0




U†

23(θ23, δ)

Hf = U23(θ23, δ)H̃U†(θ23, δ)

A =
∏

j

Aj =
∏

j

e−iHf,jLj = U23(θ23, δ)


∏

j

e−iH̃jLj


U†

23(θ23, δ)

U23U
†
23 = 1

H̃ is real! And doesn’t depend on θ23 or δ
Reduces many unnecessary computations
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Optimal Structure of the Probability for Atmospherics
3. Work in the tilde basis with θ23 and δ pulled out
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Account for Matter in Atmospherics

▶ Calculate eigenvalues λi as in NuFast-LBL: exactly or approximately with
Newton-Raphson corrections

▶ Further unitarity reductions:

Aαβ = δαβ + Vα2V
∗
β2(e

−i∆λ21L/(2E) − 1) + Vα3V
∗
β3(e

−i∆λ31L/(2E) − 1)

▶ In the tilde basis, the Ṽ Ṽ ∗ terms are real

▶ Use adjugate matrices and advanced Eigenvector-Eigenvalue Identity
PBD, S. Parke, T. Tao, X. Zhang 1908.03795

A. Abdulahi, S. Parke 2212.12565

ṼαiṼβi =
Adj[λi1− (2E)H̃]∏

k ̸=i(λi − λk)
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Earth Trajectories
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▶ Various Earth density profiles

▶ Varying or constant density in each shell

Trajectory goes from:

1. Production height to surface

2. Surface to detector depth

3. Detector depth to deepest point

4. Deepest point to detector depth:
this is the transpose of #3
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Atmospheric Results: NO
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Atmospheric Results: IO
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Nighttime Solar Neutrinos

At night solar neutrinos experience partial regeneration:
There are more νe’s from the Sun at night than during the day!

SuperK has ∼ 2σ evidence for this effect; DUNE and HK aim to measure it well
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NuFast-Earth Precision
Two approximations: Eigenvalues Earth model
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“True” has exact eigenvalues and 1M layers
Calculate |∆P | across 100× 100 grid in energy and angle
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NuFast-Earth Speed
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nuSQuIDS takes >1M ns per trajectory
C. Argüelles, J. Salvado, C. Weaver 2112.13804

OscProb takes 40 000 ns per trajectory at 44 layers (compare to 6000 ns or 200 ns)
J. Coelho, R. Pestes, et al. github.com/joaoabcoelho/OscProb

Other codes are designed with different goals in mind
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NuFast-Earth Flowchart
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NuFast-Earth Recommendations

Many choices in how to use NuFast-Earth
What is the best way for most cases?

1. Eigenvalue precision: set the number of Newton-Raphson corrections to 1
probability engine.Set Eigenvalue Precision(1);

2. Earth model: 2, 10, 10, 5 layers in each of the four main zones
PREM NDiscontinuityLayer earth density(2, 10, 10, 5);

3. Looping order: put θ23, δ, and production height on the innermost loops
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Discussion and Conclusions

▶ Disappearance can discover CPV

▶ Requires two good measurements: JUNO and DUNE/HK

▶ Can rule out some values of δ at > 3σ

▶ LBL Experiments should break down δ analyses into app vs. dis

▶ Since systematics are different, provides a good cross check

▶ NuFast-LBL and NuFast-Earth provide fast, precise, usable code

▶ Leverages modern linear algebra and neutrino theory

▶ Orders of magnitude impact in computational cost

▶ LBL code implemented in pipelines for NOvA, T2K, DUNE, HK, & JUNO

▶ Atmospheric code being implemented now
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Backups
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The Importance of cos δ
▶ If only sin δ is measured ⇒ sign degeneracy: cos δ = ±

√
1− sin2 δ

▶ Most flavor models predict cos δ
J. Gehrlein, et al. 2203.06219
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δ: What is it Really?
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Appearance vs. Disappearance

Oscillation experiments can do
appearance or disappearance experiments:

Disappearance
K2K, MINOS, T2K, NOνA
KamLAND, Daya Bay, RENO, Double CHOOZ
(Sort of) SNO, Borexino, SK-solar
JUNO, DUNE, HK

Appearance
T2K, NOνA
OPERA
Atm ντ hints @ SK & IceCube
DUNE, HK

Neither appearance nor disappearance
SK-atm, IceCube
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Varying Runtime/Power
Significance to disfavor | cos δ| = 1 at cos δ = 0
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Improvement requires both experiments!
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Start at the End

What is needed for LBL experiments?

1. All 9 channels (να → νβ)
▶ DUNE will certainly do ντ appearance

See e.g. P. Machado, H. Schulz, J. Turner 2007.00015

▶ ντ → νβ channels are not needed, but come from free from unitarity
▶ JUNO needs only ν̄e → ν̄e

2. Different energies, baselines, and densities

3. ν and ν̄

4. NO and IO

5. Oscillation parameters are mostly known
▶ Don’t need to consider e.g. ∆m2

21 > |∆m2
31| or θ23 ∼ 10◦
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All 9 Channels

Given Pee, Pµµ, P
TC
µe , and P TV

µe :

Pαe Pαµ Pατ

Peβ Pee P TC
µe − P TV

µe 1− Pee − P TC
µe + P TV

µe

Pµβ P TC
µe + P TV

µe Pµµ 1− Pµµ − P TC
µe − P TV

µe

Pτβ 1− Pee − P TC
µe − P TV

µe 1− Pµµ − P TC
µe + P TV

µe −1 + Pee + Pµµ + 2P TC
µe
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Total LBL Approach

1. Inputs: 6 oscillation parameters, experimental details (L, E, ρ, Ye)

2. Calculate λ3 approximately
▶ Iteratively improve with Newton’s method, if desired

3. Calculate the |Vαi|2’s with the Eigenvector-Eigenvalue Identity

4. Calculate the sines of the kinematic terms

5. Calculate the CP odd term with the NHS identity

6. Calculate key probabilities: Pee, Pµµ, and Pµe

7. Calculate remaining probabilities
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Precision
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Comparison to DMP
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NuFast-Earth Solar Neutrino Validation
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NuFast-Earth LBL Validation
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