The best way to probe CP violation in the lepton sector is with long-baseline accelerator neutrino experiments in the appearance mode: the appearance of ν_e in predominantly ν_{μ} beams. Here we show that it is possible to discover CP violation with disappearance experiments only, by combining JUNO for electron neutrinos and DUNE or Hyper-Kamiokande for muon neutrinos. While the maximum sensitivity to discover CP is quite modest (1.6 σ with 6 years of JUNO and 13 years of DUNE), some values of δ may be disfavored by > 3 σ depending on the true value of δ .

Neutrino oscillation experiments will be entering the precision era in the next decade with the advent of high statistics experiments like DUNE, HK, and JUNO. Correctly estimating the confidence intervals from data for the oscillation parameters requires very large Monte Carlo data sets involving calculating the oscillation probabilities in matter many, many times. In this paper, we leverage past work to present a new, fast, precise technique for calculating neutrino oscillation probabilities in matter optimized for long-baseline neutrino oscillations in the Earth's crust including both accelerator and reactor experiments. For ease of use by theorists and experimentalists, we provide fast c++ and fortran codes.

CP-Violation with Neutrino Disappearance and ${\tt NuFast}$

Peter B. Denton

 $CETUP^*$

July 8, 2024

2309.03262 PRL (in press) 2405.02400 with S. Parke

Brookhaven[®] National Laboratory

2309.03262

2309.03262

2309.03262

2/50

Peter B. Denton (BNL)

2309.03262

2/50

Peter B. Denton (BNL)

2309.03262

2309.03262

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

θ_{23} octant

Complex phase

Absolute mass scale

Peter B. Denton (BNL)

2309.03262

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

Complex phase

Absolute mass scale

Outline

- 1. Why CPV is interesting
- 2. Other non-standard probes of CPV
- 3. Relationship between appearance, disappearance, CP, T, CPT
- 4. Three ways to see why there is CPV information in disappearance
 - 4.1 Parameter counting
 - 4.2 Direct analytic calculation
 - 4.3 Numerical test
- 5. Role of the matter effect
- 6. Sensitivities
- 7. NuFast

Why is CPV interesting?

δ and CP violation

$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) **conserved**

2. Quark mass matrix: non-zero but **small** CP violation

$$\frac{J_{\rm CKM}}{J_{\rm max}} = 3 \times 10^{-4}$$
 CKMfitter 1501.05013

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

J. Pendlebury, et al. 1509.04411

$$J_{\max} = \frac{1}{6\sqrt{3}} \approx 0.096$$

Peter B. Denton (BNL)

2309.03262

δ : what is it really?

Peter B. Denton (BNL)

2309.03262

 δ : what is it not?

$\delta \not\Rightarrow Baryogenesis/Leptogenesis$

The amount of leptogenesis is a function of:

1. δ

- 2. the heavy mass scale
- 3. α , β (Majorana phases)
- 4. CP phases in the RH neutrinos

5. . . .

C. Hagedorn, et al. 1711.02866

K. Moffat, et al. 1809.08251

Peter B. Denton (BNL)

Maximal CP violation is already ruled out:

1. $\theta_{12} \neq 45^{\circ} \text{ at} \sim 15\sigma$ 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$ 3. $\theta_{23} = 45^{\circ} \text{ allowed at} \sim 1\sigma$ 4. $|\sin \delta| = 1 \text{ allowed}$

If the goal is ${\bf CP}$ violation the Jarlskog invariant should be used $\label{eq:however} however$

If the goal is **measuring the parameters** one must use δ

Given θ_{12} , θ_{13} , θ_{23} , and J, I can't determine the sign of $\cos \delta$ which is physical e.g. $P(\nu_{\mu} \rightarrow \nu_{\mu})$ depends on $\cos \delta$

Peter B. Denton (BNL)

2309.03262

Other non-standard CPV probes

1. Some information in solar due to loops in elastic scattering

V. Brdar, X-J. Xu 2306.03160 K. Kelly, et al. 2407.03174 requires 3k Borexinos

2. Sub-GeV atmospherics

K. Kelly, et al. 1904.02751 See also e.g. A. Suliga, J. Beacom 2306.11090

Solar (no systematics)

Peter B. Denton (BNL)

2309.03262

Appearance, disappearance, and CP

Appearance vs. Disappearance

Oscillation experiments can do appearance or disappearance experiments:

Disappearance K2K, MINOS, T2K, NO ν A KamLAND, Daya Bay, RENO, Double CHOOZ (Sort of) SNO, Borexino, SK-solar JUNO, DUNE, HK

Neither appearance nor disappearance SK-atm, IceCube

Appearance T2K, NO ν A OPERA Atm ν_{τ} hints @ SK & IceCube DUNE, HK

CP, T: Disappearance

$$\begin{array}{ccccc} \hline \nu_e \rightarrow \nu_e & \rightarrow & CP & \rightarrow & \hline \bar{\nu}_e \rightarrow \bar{\nu}_e \\ & \searrow & & \downarrow \\ & & CPT & T \\ & & \searrow & \downarrow \\ & & & \downarrow \\ \hline \bar{\nu}_e \rightarrow \bar{\nu}_e \end{array}$$

Disappearance measurements are even eigenstates of CP

$$CP[P(\nu_e \to \nu_e)] = P(\bar{\nu}_e \to \bar{\nu}_e) \stackrel{CPT}{=} P(\nu_e \to \nu_e)$$

Assume that CPT is a good symmetry

Peter B. Denton (BNL)

2309.03262

CP, T: Appearance

Appearance measurements are not eigenstates of CP

Appearance and Disappearance, CP even and CP odd terms Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha\alpha}^{CP+}$$

$$\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$$

Peter B. Denton (BNL)

2309.03262

Appearance and Disappearance, CP even and CP odd terms Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha \alpha}^{CP+}$$

Appearance:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = -4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{21}$$
$$-4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 3}^{*}U_{\beta 3}]\sin^{2}\Delta_{31}$$
$$-4\Re[U_{\alpha 3}U_{\beta 3}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{32}$$
$$\pm 8J_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$$
$$= P_{\alpha\beta}^{CP+} + P_{\alpha\beta}^{CP-}$$

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Sign depends on α, β

Peter B. Denton (BNL)

2309.03262

1. Appearance is sensitive to CPV

- 1. Appearance is sensitive to CPV
- 2. Disappearance has no CPV sensitivity

- 1. Appearance is sensitive to CPV
- 2. Disappearance has no CPV sensitivity
- 3. Any δ dependence in disappearance is in ν_{μ} not ν_{e}

. .

$$\left(egin{array}{cccc} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{array}
ight)$$

Correct Statements

 \blacktriangleright Appearance is the best way to measure δ and CPV

... given known oscillation parameters, systematics, and realistic experiments

- Probes mostly $\sin \delta$ not $\cos \delta$
- Don't need both ν and $\bar{\nu}$ (but systematics)
- **>** Disappearance can measure δ
 - ▶ CPV can be discovered with only disappearance measurements
 - $\blacktriangleright \text{ Probes mostly } \cos \delta \text{ not } \sin \delta$
 - Requires measurements of two flavors
 - "Works through unitarity" (as do nearly all oscillation measurements)

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ► JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three

- Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i>j} C_{ij}^{\alpha} \sin^2 \Delta_{ij}$$
$$C_{ij}^{\alpha} = |U_{\alpha i}|^2 |U_{\alpha j}|^2$$
$$|U_{\alpha i}| = \left(\frac{C_{ij}^{\alpha} C_{ik}^{\alpha}}{C_{jk}^{\alpha}}\right)^{1/4}$$

Peter B. Denton (BNL)

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

Daya Bay 1809.02261

Peter B. Denton (BNL)

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

Peter B. Denton (BNL)

2309.03262
1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_{μ} disappearance, 4 independent parameters will be measured
 - ▶ Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) ⇒ no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_{μ} disappearance, 4 independent parameters will be measured
 - ▶ Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) ⇒ no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - Electron neutrino row:
 - ▶ KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ▶ Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_{μ} disappearance, 4 independent parameters will be measured
 - ▶ Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) ⇒ no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles
- 6. If we determine $\cos \delta \neq \pm 1 \quad \Rightarrow \quad \text{CP is violated!}$

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

$$J_{CP}^{2} = |U_{e2}|^{2} |U_{\mu2}|^{2} |U_{e3}|^{2} |U_{\mu3}|^{2} - \frac{1}{4} \left(1 - |U_{e2}|^{2} - |U_{\mu2}|^{2} - |U_{e3}|^{2} - |U_{\mu3}|^{2} + |U_{e2}|^{2} |U_{\mu3}|^{2} + |U_{e3}|^{2} |U_{\mu2}|^{2}\right)^{2}$$

Can show that if any one $|U_{\alpha i}|^2 = 0 \Rightarrow J = 0$

Disappearance can tell us if CP is violated, but not if nature prefers ν 's or $\bar{\nu}$'s

Where is $|U_{\mu 2}|^2$?

Where is $|U_{\mu 2}|^2$?

• There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)

There is no δ information in |U_{μ1}|² + |U_{μ2}|²
 There is δ information in |U_{μ1}|²|U_{μ2}|²

(sum of Δ_{31} and Δ_{32} terms)

There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (su
There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$

• This comes from the Δm_{21}^2 term

(sum of Δ_{31} and Δ_{32} terms)

DUNE and HK can measure Δm^2_{21} somewhat PBD, J. Gehrlein 2302.08513

There is no δ information in |U_{µ1}|² + |U_{µ2}|² (sum of Δ₃₁ and Δ₃₂ terms)
There is δ information in |U_{µ1}|²|U_{µ2}|²
This comes from the Δm²₂₁ term
DUNE and HK can measure Δm²₂₁ somewhat PBD, J. Gehrlein 2302.08513

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 \quad + \qquad \qquad 0.03 \cos \delta) \left(\frac{\pi}{33}\right)^2$$

$$\Delta m_{21}^2 / |\Delta m_{31}^2| \approx 33$$

Peter B. Denton (BNL)

2309.03262

 There is no δ information in |U_{µ1}|² + |U_{µ2}|² (sum of Δ₃₁ and Δ₃₂ terms)
 There is δ information in |U_{µ1}|²|U_{µ2}|²
 This comes from the Δm²₂₁ term
 DUNE and HK can measure Δm²₂₁ somewhat PBD, J. Gehrlein 2302.08513

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 \quad + \qquad \qquad 0.03 \cos \delta) \left(\frac{\pi}{33}\right)^2$$

$$\Delta m_{21}^2 / |\Delta m_{31}^2| \approx 33$$

So the probability is large for cos δ = −1?
So the effect is ~ −0.0005 cos δ?

Peter B. Denton (BNL)

CETUP*: July 8, 2024 22/50

There is no δ information in |U_{μ1}|² + |U_{μ2}|²
There is δ information in |U_{μ1}|²|U_{μ2}|²
This comes from the Δm²₂₁ term

▶ This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 \quad + \qquad \qquad 0.03 \cos \delta) \left(\frac{\pi}{33}\right)^2$$

$$\Delta m_{21}^2 |\Delta m_{31}^2| \approx 33$$

So the probability is large for cos δ = −1?
So the effect is ~ −0.0005 cos δ?

Peter B. Denton (BNL)

CETUP*: July 8, 2024 22/50

▶ This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 \quad + \qquad \qquad 0.03 \cos \delta) \left(\frac{\pi}{33}\right)^2$$

$$\stackrel{\Delta m_{21}^2 / |\Delta m_{31}^2| \approx 33}{\text{Sign is wrong}}$$
effect is ~ -0.0005 cos δ ? Magnitude is ~ 16 too small

Peter B. Denton (BNL)

So theSo the

▶ Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

▶ Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$$

▶ Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$
$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeV PBD, S. Parke 1902.07185

▶ Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{23}$$

▶ Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 S_{\odot}$$
$$S_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeV PBD, S. Parke 1902.07185

▶ Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \to \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

 $a \propto \rho E$

► Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{23}$$

▶ Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 S_{\odot}$$
$$S_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeV PBD, S. Parke 1902.07185

▶ Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \to \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

▶ So the sign is swapped

$$a \propto \rho E$$

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.35 \to -0.26$$

► Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{23}$$

▶ Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 S_{\odot}$$
$$S_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeV PBD, S. Parke 1902.07185

▶ Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \to \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

▶ So the sign is swapped

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.35 \rightarrow -0.26$$

► Also s_{13} increases in matter ~ 15%: total effect is $0.004 \cos \delta$

Peter B. Denton (BNL)

2309.03262

CETUP*: July 8, 2024 23/50

 $a \propto \rho E$

► Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{23}$$

▶ Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$
$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeV PBD, S. Parke 1902.07185

▶ Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \to \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

▶ So the sign is swapped

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.35 \rightarrow -0.26$$

Also s₁₃ increases in matter ~ 15%: total effect is 0.004 cos δ
 This gets us half of the effect, and the correct sign
 Peter B. Denton (BNL)
 2309.03262

CETUP*: July 8, 2024 23/50

 $a \propto \rho E$

▶
$$\frac{\Delta m_{\mu\mu}^2 L}{4E}$$
 in matter at the maximum is ~ π

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

•
$$\frac{\Delta m_{\mu\mu}^2 L}{4E}$$
 in matter at the maximum is $\sim \pi$
H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283
PBD, S. Parke 2401.10326

• The Δm_{32}^2 component is a bit off π at max

•
$$\frac{\Delta m_{\mu\mu}^2 L}{4E}$$
 in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

• The Δm_{32}^2 component is a bit off π at max

• Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32} \approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad (matter)$$

•
$$\frac{\Delta m_{\mu\mu}^2 L}{4E}$$
 in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

- The Δm_{32}^2 component is a bit off π at max
- ► Leading order in s_{13} : $\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32}$ ≈ -2 (0.0094 $-0.023\cos\delta$)0.1 (matter)
- Adds in another $\approx 0.004 \cos \delta$ effect

•
$$\frac{\Delta m_{\mu\mu}^2 L}{4E}$$
 in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

- The Δm_{32}^2 component is a bit off π at max
- Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32} \approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)}$$

- ► Adds in another $\approx 0.004 \cos \delta$ effect
- ▶ Total is $\approx 0.008 \cos \delta$ which agrees with exact calculation

Inputs are *only*:

Daya Bay data for θ₁₃
 KamLAND data for θ₁₂ and Δm²₂₁
 JUNO 6 yrs precision sensitivity on θ₁₂, Δm²₂₁, Δm²₃₁
 DUNE 6.5+6.5 yrs disappearance channels sensitivity only
 2103.04797

JUNO and DUNE disappearance Sensitivities

JUNO and HK disappearance Sensitivities

Varying Runtime/Power

Significance to disfavor $|\cos \delta| = 1$ at $\cos \delta = 0$

Improvement requires **both** experiments!

Peter B. Denton (BNL)

2309.03262

CETUP*: July 8, 2024 28/50

NuFast

A fast code for long-baseline neutrino oscillation probabilities in matter

2405.02400 with S. Parke

The problem

Many approaches

Solve the Schrödinger equation $i\frac{d}{dt}|\nu\rangle = H(t)|\nu\rangle$

If H(t) = H (constant density)

$$\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}) = \left[e^{-iHL}\right]_{\beta\alpha} \qquad \qquad P = |\mathcal{A}|^2$$

Exponential requires computing eigenvalues and eigenvectors of ${\cal H}$

Many approaches

Modify vacuum probabilities

▶ Get the eigenvalues by solving the cubic

Cardano 1545 V. Barger, et al. PRD 22 (1980) 2718

► Get the eigenvectors

H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273 K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295 PBD, S. Parke, X. Zhang 1907.02534 A. Abdulahi, S. Parke 2212.12565 Other approaches? Are approximations useful? Optimal hybrids? What is the goal?

Fermilab computing experts bolster NOvA evidence, 1 million cores consumed

July 3, 2018 | Marcia Teckenbrock

Array

How do you arrive at the physical laws of the universe when you're given experimental data on a renegade particle that interacts so rarely with matter, it can cruise through light-years of lead? You call on the power of advanced computing.

The NOvA neutrino experiment, in collaboration with the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC-4) program and the HEPCloud program at DOE's Fermi National Accelerator Laboratory, was able to perform the largest-scale analysis ever to support the recent evidence of antineutrino scientific, a phenomenon that may hold dues to how our universe evolved.

Using Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), located at Lawrence Berkelsy National Laboratory, NOA used over 1 million computing cores, or CPLs between May 14 and 15 and over a short timeframe one week later. This is the largest number of CPUs ever used concurrently over this duration — about 54 hours — for a single highenergy physics experiment. This unprecedented amount of computing enabled scientists to carry out some of the most complicated techniques used in neutrino physics, allowing them to dig deeper into the seldom seen interactions of neutrinos. This Cori allocation was more than 400 times the amount of Fermilab computing allocated to the NOA experiment and 50 times the total computing capacity at Fermilab allocated for all of its arc-physics experiments. A continuation of the analysis was performed on NERSC's Cori and Edision supercomputers one week later. In total, <u>maxifyels million Conclustry was constructed sy NevyX</u> in the 54-hour period. Executing the same analysis on a single desktor computer would take 4.000 vensr.

FNAL Newsroom

CETUP*: July 8, 2024 34/50

Peter B. Denton (BNL)
Monte-Carlo estimates of statistical significances

Wilks' theorem is often wrong

At each point in parameter space, simulate the experiment many times

"many" means $\gg 1/p$ for a desired p-value

This is sometimes called Feldman-Cousins

G. Feldman, R. Cousins physics/9711021 This isn't actually what was novel in the FC paper

Study found most of the time was spent computing probabilities

NOvA/T2K are $\sim 3\sigma$ experiments, but DUNE/HK will be $\gtrsim 5\sigma$ experiments!

> DUNE sensitivities require computing the probabilities "a zillion times"

2405.02400

Start at the end

What is needed for experiments?

- 1. All 9 channels $(\nu_{\alpha} \rightarrow \nu_{\beta})$
 - ▶ DUNE will certainly do ν_{τ} appearance

See e.g. P. Machado, H. Schulz, J. Turner 2007.00015

- ▶ $\nu_{\tau} \rightarrow \nu_{\beta}$ channels are not needed, but come from free from unitarity
- ▶ JUNO only needs $\nu_e \rightarrow \nu_e$
- 2. Different energies, baselines, and densities
- 3. ν and $\bar{\nu}$
- 4. NO and IO
- 5. Oscillation parameters are mostly known
 - ▶ Don't need to consider e.g. $\Delta m_{21}^2 > |\Delta m_{31}^2|$ or $\theta_{23} \sim 10^\circ$

How to achieve speed

- 1. Avoid costly operations
 - ▶ sin, cos (and inverse functions) are very slow
 - sqrt is quite slow, but not as bad as trigs
 - Division is slower than multiplication (0.2x may be faster than x/5)
- 2. Reduce repeated calculations
 - Compute $\frac{L}{4E}$ in the correct units once
 - Compute each of the three $\sin \frac{\Delta m_{ij}^2 L}{4E}$ once

All of these are compiler dependent

Optimal structure of the probability

- 1. Amplitude requires four trig functions of kinematic variables $(\Delta m_{ij}^2 L/4E) \times$
- 2. Writing the probabilities out requires three trig functions \checkmark
- 3. Disappearance structure is straightforward:

$$P_{\alpha\alpha} = 1 - 4\sum_{i>j} |V_{\alpha i}|^2 |V_{\alpha j}|^2 \sin^2 \frac{\Delta\lambda_{ij}L}{4E}$$

H in matter has eigenvalues λ_i and eigenvectors $V_{\alpha i}$

Optimal structure of the probability

4. Appearance structure:

$$P_{\mu e}^{CP+} = 2\sum_{i>j} (|V_{\tau k}|^2 - |V_{\mu i}|^2 |V_{ej}|^2 - |V_{\mu j}|^2 |V_{ei}|^2) \sin^2 \frac{\Delta \lambda_{ij} L}{4E}$$

$$P_{\mu e}^{CP-} = -8J \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \lambda_{21} \Delta \lambda_{31} \Delta \lambda_{32}} \sin \frac{\Delta \lambda_{21} L}{4E} \sin \frac{\Delta \lambda_{31} L}{4E} \sin \frac{\Delta \lambda_{32} L}{4E}$$

Leverages NHS identity: V. Naumov IJMP 1992 P. Harrison, W. Scott hep-ph/9912435

Note that CP even/odd is actually T even/odd due to matter

Account for matter

- 1. Need the eigenvalues λ_i
- 2. For eigenvectors, naively need $\Re(V_{\alpha i}V^*_{\beta j}V^*_{\alpha j}V_{\beta i})$
- 3. Given our form, need only the $|V_{\alpha i}|^2$ and J
 - Don't need any phase information of the eigenvectors!

4. Can compute the $|V_{\alpha i}|^2$ from the λ_i and submatrix eigenvalues (requires only a square root) using Eigenvector-Eigenvalue Identity

$$|V_{\alpha i}|^2 = \frac{\prod_{k=1}^{n-1} (\lambda_i - \xi_k^{\alpha})}{\prod_{k=1; k \neq i}^n (\lambda_i - \lambda_k)}$$

See e.g. PBD, S. Parke, T. Tao, X. Zhang 1908.03795 Can actually avoid the $\sqrt{}$ in practice

Leverages PBD, S. Parke, X. Zhang 1907.02534

Eigenvalues are hard

The eigenvalues in matter λ_i depend on S:

$$S = \cos\left\{\frac{1}{3}\cos^{-1}\left[\frac{2A^3 - 9AB + 27C}{2(A^2 - 3B)^{3/2}}\right]\right\}$$

where

$$A = \sum \lambda_i = \Delta m_{21}^2 + \Delta m_{31}^2 + a$$

$$B = \sum_{i>j} \lambda_i \lambda_j = \Delta m_{21}^2 \Delta m_{31}^2 + a [\Delta m_{21}^2 (1 - |U_{e2}|^2) + \Delta m_{31}^2 (1 - |U_{e3}|^2)]$$

$$C = \prod \lambda_i = a \Delta m_{21}^2 \Delta m_{31}^2 |U_{e1}|^2$$

Peter B. Denton (BNL)

CETUP*: July 8, 2024 41/50

Approximate eigenvalues

1. Instead, approximate one eigenvalue

 \triangleright λ_3 is best because is never parametrically small and easy to approximate

2. From DMP:

$$\Delta_3 \approx \Delta m_{31}^2 + \frac{1}{2} \Delta m_{ee}^2 \left(x - 1 + \sqrt{(1 - x)^2 + 4x s_{13}^2} \right)$$

$$x \equiv \frac{a}{\Delta m_{ee}^2} \qquad \Delta m_{ee}^2 \equiv \Delta m_{31}^2 - s_{12}^2 \Delta m_{21}^2$$

H. Minakata, S. Parke 1505.01826 PBD, H. Minakata, S. Parke 1604.08167 H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

3. Get other two eigenvalues by picking two of A, B, C conditions

Requires one more $\sqrt{}$

The approximation

- ▶ This is the only approximation used in the entire approach
- ▶ In vacuum the approximation returns to the correct value

Many approximations in the literature are not correct in vacuum limit See G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517

► In fact can iteratively improve λ_3 with rapid convergence via Newton's method:

$$\lambda_3 \to \lambda_3 - \frac{X(\lambda_3)}{X'(\lambda_3)}$$
$$X(\lambda) = \lambda^3 - A\lambda^2 + B\lambda - C = 0$$

- Precision improvement starts at 10⁻⁵ for the first step
 The improvement is quadratic thereafter
- One line of code, just loop as many times as desired

All 9 channels

Given P_{ee} , $P_{\mu\mu}$, $P_{\mu e}^{CP+}$, and $P_{\mu e}^{CP-}$:

Total approach

- 1. Inputs: 6 oscillation parameters, experimental details (L, E, ρ, Y_e)
- 2. Calculate λ_3 approximately
 - ▶ Iteratively improve with Newton's method, if desired
- 3. Calculate the $|V_{\alpha i}|^2$'s with the Eigenvector-Eigenvalue Identity
- 4. Calculate the sines of the kinematic terms
- 5. Calculate the CP odd term with the NHS identity
- 6. Calculate key probabilities: P_{ee} , $P_{\mu\mu}$, and $P_{\mu e}$
- 7. Calculate remaining probabilities

Precision

CETUP*: July 8, 2024 46/50

Peter B. Denton (BNL)

2405.02400

Speed

Is this algorithm fast? How does it compare?

- "Conservative" = default, -00
- "Aggressive" = -Ofast and -ffast-math
- ▶ Some variation expected due to architecture

See also J. Page 2309.06900and P. Huber, et al. hep-ph/0701187

Peter B. Denton (BNL)

CETUP*: July 8, 2024 47/50

NuFast: the code

- ► Code is on github: github.com/PeterDenton/NuFast
- \blacktriangleright Implementations in c++ and f90

Easy to use and there are comments!

```
// NuFast.cpp
// Calculate the probabilities:
Probability_Matter_LBL(s12sq, s13sq, s23sq, delta,
Dmsq21, Dmsq31, L, E, rho, Ye, N_Newton,
&probs_returned);
// Print out the probabilities to terminal
for (int alpha = 0; alpha < 3; alpha++)
{
    for (int beta = 0; beta < 3; beta++)
    {
        printf("%d %d %g\n", alpha, beta,
            probs_returned[alpha][beta]);
    } // beta, 3
} // alpha, 3</pre>
```

• $\bar{\nu}$: E < 0; IO: $\Delta m_{31}^2 < 0$

► Folder called Benchmarks to make the plots and speed tests in the paper

Other talks at CETUP to Look Out For

TALK: Dark Matter Raining on DUNE and Other Large Volume Detectors

345m

Authors: Javier Acevedo, Joshua Berger, Peter Denton

Direct detection is a powerful means of searching for particle physics evidence of dark matter (DM) heavier than about a GeV with volume, lowthreshold detectors.

In many scenarios, some fraction of the DM may be boosted to large velocities enhancing and generally modifying possible detection signatures. We investigate the scenario where 100\% of the DM may be boosted at the Earth due to new attractive long-range forces. This opens up two main improvements in detection capabilities: 1) the detection signatures are stronger opening up large-volume neutrino detectors, such as DUNE, Super-K, hyper-K, and JUNO, as possible DM detectors, and 2) the large boost allows for detectable signatures of sub-CeV DM. At lower boosts, a modified, higher-than-usual energy signal could be accessible at direct detection experiments such as LZ. In addition, the model leads to a significant anisotropy in the signal with the DM flowing dominantly vertically at the Earth's surface instead of the typical approximately isotropic DM signal. We develop the theory behind this model and also calculate realistic constraints using a detailed GENIE simulation of the signal inside detectors.

Speaker: Joshua Berger (Colorado State University)

TALK: A Modern Look at the Oscillation Physics Case for a Neutrino Factory

Author: Julia Gehrlein

The next generation of neutrino oscillation experiments, JUNO, DUNE, and HK, are under construction now and will collect data over the next decade and beyond. As there are no approved plans to follow up this program with more advanced neutrino oscillation experiments, we consider here one option that had gained considerable interest more than a decade ago: a neutrino factory. Such an experiment uses stored muons in a racetrack configuration with extremely well characterized decays reducing systematic uncertainties and providing for more oscillation channels. Such a machine could also be one step towards a high energy muon collider program. We consider a long-baseline configuration to SURF using the DUNE far detectors or modifications thereof, and compare the expected ensitivities to the three-flavor oscillation parameters to the anticipated results from DUNE and HK. We find that a neutrino factory can improve our understanding of CP violation and also aid in disentangling the complicated flavor puzzle.

Speaker: Julia Gehrlein (Colorado State University)

Peter B. Denton (BNL)

2407.01670 & 2407.02572

CETUP*: July 8, 2024 49/50

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Analyses already exist but...

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Analyses already exist but...
- LBL Experiments should break down δ analyses into app vs. dis
 Since systematics are different, provides a good cross check

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Analyses already exist but...
- ▶ LBL Experiments should break down δ analyses into app vs. dis
- ▶ Since systematics are different, provides a good cross check
- > NuFast for fast oscillation probabilities
- ▶ Atmospherics and nighttime solar in the works!

Peter B. Denton (BNL)

2405.02400 & 2309.03262

Backups

Peter B. Denton (BNL)

2405.02400 & 2309.03262

CETUP*: July 8, 2024 51/50

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

Complex phase in different parameterizations

- Can relate the complex phase in one parameterization to that in another
- \blacktriangleright U_{132} and U_{213} similar to U_{123}
- δ constrained to ~ [150°, 210°] in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - \Rightarrow parameterization dependent

DUNE TDR II 2002.03005

Quark mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{\text{PDG}} = 68.53^{\circ}$

Looks like "large" CPV:

 $\sin \delta_{\rm PDG} = 0.93 \sim 1$

yet $J_{\rm CKM}/J_{\rm max} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

Standard oscillation parameters

Can see that the combination doesn't like the NO while it does like the IO IO preferred over NO at $\Delta\chi^2 = 2.3$

CP violation in oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$
$$J \equiv s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta$$

```
C. Jarlskog PRL 55, 1039 (1985)
```

Extracting δ from data requires every other oscillation parameter
 J requires only Δm²₂₁ (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a / \Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a / \Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Peter B. Denton (BNL)

CETUP*: July 8, 2024 56/50

Repeated rotations

Note that $e^{i\delta}$ must be on first or third rotation

Peter B. Denton (BNL)

2006.09384

CETUP*: July 8, 2024 58/50

The importance of $\cos \delta$

• If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 - \sin^2 \delta}$

• Most flavor models predict $\cos \delta$

L. Everett, et al. 1912.10139

Peter B. Denton (BNL)

CETUP*: July 8, 2024 59/50

Precision

Comparison to DMP

DMP: PBD, H. Minakata, S. Parke 1604.08167