Abstract

Ultra high energy cosmic rays and astrophysical neutrinos are two of the most energetic observables we have into the universe, yet their origins remain a mystery. Each class of particles has different advantages and disadvantages when it comes to determining their sources. I will present techniques well suited for each class. For cosmic rays, ground based experiments can't see the whole sky and I will discuss the penalty they pay for this. For neutrinos, I will present a general technique for determining their origin.

Finding Anisotropies in Cosmic Rays and Neutrinos

Peter B. Denton

NBIA Astroparticle Seminar

April 24, 2017

1409.0883, 1505.03922, 1703.09721 with Tom Weiler and Danny Marfatia

github.com/PeterDenton/ANA

VILLUM FONDEN

MILKY WAY ?

NU

P. B. DENTON

NBIA Astroparticle Seminar: April 24, 2017 3/43

NBIA Astroparticle Seminar: April 24, 2017 4/43

Energy Loss Rates

NBIA Astroparticle Seminar: April 24, 2017 5/43

NBIA Astroparticle Seminar: April 24, 2017 6/43

UHECR Anisotropy Unknowns

How strong are the magnetic fields inside and between galaxies?

Pshirkov et. al.: 1103.0814

Jansson, Farrar: 1204.3662

- What is the composition of UHECRs? Protons? Iron nuclei?
- What are the sources of UHECRs?
- How are UHECRs accelerated to such extreme energies?

Gunn, Ostriker: PRL 22 (1969)

Pruet, Guiles, Fuller: astro-ph/0205056

Groves, Heckman, Kauffmann: astro-ph/0607311

Fang, Kotera, Olinto: 1201.5197

- What is the cause of the suppression at the end of the spectrum?
- New physics...?

UHECR Anisotropy Knowns

- ► UHECRs can't be contained by the Milky Way's magnetic field ⇒ extragalactic.
- \blacktriangleright UHECRs with energies above \sim 50 EeV lose energy via interactions with the CMB.

Greisen: PRL 16 (1966)

Zatsepin, Kuzmin: JETP Lett. 4 (1966)

- UHECR sources must be close \Rightarrow anisotropies.
- ▶ UHECRs bend in Galactic and extragalactic magnetic fields.
- No conclusive anisotropies found yet.

Composition

Auger: heavy composition

TA: light composition

Disagreement.

Auger and TA: 1503.07540 NBIA Astroparticle Seminar: April 24, 2017 10/43

UHECR Anisotropy Searches

Targeted searches have weak evidence.

Auger: 1207.4823

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 11/43

UHECR Anisotropy Searches

NBIA Astroparticle Seminar: April 24, 2017 12/43

Spherical Harmonics: Distributions on the Sky

- Y_{ℓ}^{m} 's provide an orthogonal expansion of any distribution on the sky.
- Useful in low statistics, high uncertainty experiments:
 - unknown magnetic fields,
 - unknown UHECR composition.
- The true distribution as seen at earth:

$$I(\Omega) = \sum_{\ell,m} a_{\ell}^m Y_{\ell}^m(\Omega) \,.$$

The power spectrum is rotational invariant.

$$C_\ell = \frac{1}{2\ell+1} \sum_m |a_\ell^m|^2 \,.$$

Spherical Harmonics Visualizations

en.wikipedia.org/wiki/Spherical_harmonics

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 14/43

Spherical Harmonics: Possible Sources

Identifiable sources: Cen A, TA hotspot, supergalactic plane, etc. use specific Y_{ℓ}^{m} 's.

Point source \Rightarrow dipole: $I_D \propto a_0^0 Y_0^0 + a_1^0 Y_1^0$. Planar source \Rightarrow quadrupole: $I_Q \propto a_0^0 Y_0^0 + a_2^0 Y_2^0$.

Each Y_{ℓ}^m partitions the sky into nodal zones,

$$\langle N_Z(\ell)
angle = rac{\ell+1}{3(2\ell+1)} (2\ell^2 + 4\ell + 3) \xrightarrow[\ell o \infty]{} rac{\ell^2}{3} ,$$

so $\ell_{\max} < \sqrt{3N}$.

2MRS Sky Map

Structure in the local universe \Rightarrow anisotropies in UHECRs.

2MRS: 1108.0669 NBIA Astroparticle Seminar: April 24, 2017 16/43

Spherical Harmonic Coefficients: Galaxies

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 17/43

Spherical Harmonic Coefficients: Uniform

NBIA Astroparticle Seminar: April 24, 2017 18/43

Spherical Harmonics: Possible Sources

Dipole and quadrupole: well motivated.

Auger and TA's Nonuniform Partial Sky Coverage

NBIA Astroparticle Seminar: April 24, 2017 20/43

Auger and TA Exposure Combination

Combined exposure:

$$\omega(\Omega, b) = \omega_{\mathrm{TA}}(\Omega) + b \omega_{\mathrm{Auger}}(\Omega)$$

"Fudge factor":

$$ar{b}^{(0)} = rac{\Delta N_{
m Auger}}{\Delta N_{
m TA}} rac{\int_{\Delta\Omega} d\Omega \omega_{
m TA}(\Omega)}{\int_{\Delta\Omega} d\Omega \omega_{
m Auger}(\Omega)}$$

P. Billoir for Auger 1403.6314

Problems:

- 1. Statistics are low in the intersection region.
- 2. $\bar{b}^{(0)}$ is a zeroth order approximation to *b* under the assumption of isotropy.
- 3. Corrections to $\bar{b}^{(0)}$ need to be fit iteratively along with anisotropy parameters.
- 4. Large systematic energy uncertainty between the experiments.

Anisotropy Measures

A general anisotropy measure:

$$\alpha \equiv \frac{\mathit{I}_{\max} - \mathit{I}_{\min}}{\mathit{I}_{\max} + \mathit{I}_{\min}} \in [0, 1] \, .$$

Define

$$\alpha_D \equiv \sqrt{3} \frac{|a_1^0|}{a_0^0} \qquad \qquad \alpha_Q \equiv \frac{-3\sqrt{\frac{5}{4}} \frac{a_2^0}{a_0^0}}{2 + \sqrt{\frac{5}{4}} \frac{a_2^0}{a_0^0}} \quad (\text{`New' later}),$$

Then $\alpha_D = \alpha$ for a purely dipolar distribution and $\alpha_Q = \alpha$ for a purely quadrupolar distribution.

Reconstructing a_{ℓ}^{m} 's for Nonuniform Partial Sky Coverage Nonuniform exposure is a manageable problem:

$$ar{a}_\ell^m = rac{1}{N}\sum_i^N Y_\ell^{m*}(\Omega_i) o rac{1}{\mathcal{N}}\sum_i^N rac{Y_\ell^{m*}(\Omega_i)}{\omega(\Omega_i)}\,,$$

where $\mathcal{N} = \sum_{i}^{N} \frac{1}{\omega(\Omega_{i})}$, ω is the exposure function.

Sommers: astro-ph/0004016

Reconstructing $a_{\ell}^{m'}$ s for Nonuniform Partial Sky Coverage Nonuniform exposure is a manageable problem:

$$ar{a}_\ell^m = rac{1}{N}\sum_i^N Y_\ell^{m*}(\Omega_i) o rac{1}{\mathcal{N}}\sum_i^N rac{Y_\ell^{m*}(\Omega_i)}{\omega(\Omega_i)}\,,$$

where $\mathcal{N} = \sum_{i}^{N} \frac{1}{\omega(\Omega_{i})}$, ω is the exposure function.

Sommers: astro-ph/0004016

Partial sky is more challenging: no information from part of the sky.

$$\begin{split} [\mathcal{K}]_{\ell m}^{\ell' m'} &\equiv \int d\Omega \; \omega(\Omega) Y_{\ell}^{m}(\Omega) Y_{\ell'}^{m'}(\Omega) \\ b_{\ell}^{m} &= \sum_{\ell' m'} [\mathcal{K}]_{\ell m}^{\ell' m'} a_{\ell'}^{m'} \implies a_{\ell}^{m} = \sum_{\ell' m'}^{\ell_{max}} [\mathcal{K}^{-1}]_{\ell m}^{\ell' m'} b_{\ell'}^{m'} \\ b_{\ell}^{m} &\to \text{uncorrected (observed on earth),} \end{split}$$

 $a_\ell^m
ightarrow$ nature's true anisotropy.

Billoir, Deligny: 0710.2290

NBIA Astroparticle Seminar: April 24, 2017 23/43

Dipole Reconstruction Effectiveness

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 24/43

Reconstructing $a_{\ell}^{m'}$ s for Nonuniform Partial Sky Coverage

- An alternative formalism to the *K*-matrix approach.
- Expand the exposure $\omega(\Omega) = \sum_{\ell,m} c_{\ell}^m Y_{\ell}^m(\Omega)$.
- ▶ ω does not depend on RA \Rightarrow only m = 0 coefficients are nonzero.
- Fortuitously, c₂⁰ = 0 for Auger's exposure (nearly equal to zero for Telescope Array).

PBD, Weiler: 1409.0883

Quadrupole Component of Exposure

NBIA Astroparticle Seminar: April 24, 2017 26/43

Reconstructing $a_{\ell}^{m'}$ s for Nonuniform Partial Sky Coverage

When reconstructing a pure quadrupole, Auger and TA's exposures may be ignored,

$$b_2^m = a_2^m \left[1 + rac{(-1)^m c_4^0 f(m)}{7\sqrt{4\pi}}
ight]$$

A correction of 0.05, -0.04, 0.009 for |m| = 0, 1, 2.

Quadrupole Reconstruction Effectiveness

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 28/43

Quadrupole Reconstruction Technique Effectiveness

NBIA Astroparticle Seminar: April 24, 2017 29/43

UHECR Conclusions

- Theoretical uncertainties in composition and magnetic fields makes point source searches difficult.
- Spherical harmonics provide a good multi-purpose tool to overcome these.
- An analytic treatment can improve sensitivity of certain analyses.

IceCube Detects Astrophysical Neutrinos

IC: 1510.05223

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 31/43

IceCube Detects Astrophysical Neutrinos

32 events with $E_{
m dep} > 60$ TeV from IC 4 year HESE

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 32/43

IceCube Detects Astrophysical Neutrinos

IC: 1311.5238

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 33/43

Significance of the Galaxy as the Source

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 34/43

Galactic or Extragalactic?

Various methods to search for anisotropies:

Windowed search around the Galactic center/plane.

IC: 1311.5238, 1405.5303

Ahlers, Murase: 1309.4077

Anchordoqui, et. al.: 1410.0348

Palladino, Vissani: 1601.06678

Known Galactic sources:

CRs, γ -ray correlations, GC, misc. Galactic catalogs, ...

IC: 1406.6757

Ahlers, et. al.: 1505.03156

Troitsky: 1511.01708

Celli, Palladino, Vissani: 1604.08791

Known extragalactic sources: AGNs, blazars, SFGs, GRBs, ...

Bechtol, et. al.: 1511.00688

Murase: 1511.01590

IC: 1601.06484

Padovani, et. al.: 1601.06550

NBIA Astroparticle Seminar: April 24, 2017 35/43

A More General Approach

- Treat the extragalactic flux as isotropic, $\Phi_{\text{exgal}}(\Omega) = \frac{1}{4\pi}$.
- \blacktriangleright Scale the galactic flux with the matter distribution $\rho_{gal},$ McMillan: 1102.4340

$$\Phi_{
m gal}(\Omega) = rac{\int ds \,
ho_{
m gal}(s, \Omega)}{\int ds d\Omega' \,
ho_{
m gal}(s, \Omega')}$$

 \blacktriangleright $f_{\rm gal}$ is the fraction of the astrophysical flux from the Galaxy,

$$\Phi_{\mathrm{astro}}(\Omega, f_{\mathrm{gal}}) = f_{\mathrm{gal}} \Phi_{\mathrm{gal}}(\Omega) + (1 - f_{\mathrm{gal}}) \Phi_{\mathrm{exgal}}(\Omega)$$
.

Expected Distribution From the Galaxy

NBIA Astroparticle Seminar: April 24, 2017 37/43

Energy and Topology Information for Backgrounds

- ▶ For $E_{\rm dep} > 60$ TeV, we expect < 4 events from backgrounds.
- $\blacktriangleright~\Gamma_{\rm bkg}\sim 3.7$ while the best fit $\Gamma_{\rm astro}\sim 2.58.$

Results are largely independent to uncertainties in the spectra.

The background and astrophysical likelihoods for event i are,

$$\mathcal{L}_{\mathrm{bkg},i} = f_{\mathrm{bkg},i} \frac{dN_{\mathrm{bkg}}}{dE}(E_i),$$

$$\mathcal{L}_{\mathrm{astro},i} = f_{\mathrm{astro},i} \frac{dN_{\mathrm{astro}}}{dE}(E_i),$$

where $f_{bkg(astro),i}$ is the expected fraction of events with topology and declination that are background (astrophysical).

Galactic or Extragalactic?

Given that an event is astrophysical, the conditional likelihoods are,

$$egin{aligned} \mathcal{L}_{ ext{gal|astro},i}(f_{ ext{gal}}) &= f_{ ext{gal}} \Phi_{ ext{gal}}(\Omega_i) \,, \ \mathcal{L}_{ ext{exgal|astro},i}(f_{ ext{gal}}) &= (1-f_{ ext{gal}}) \Phi_{ ext{exgal}}(\Omega_i) \,. \end{aligned}$$

The likelihood that event i is described by this model is,

$$\mathcal{L}_i(f_{\mathrm{gal}}) = \mathcal{L}_{\mathrm{bkg},i} + \mathcal{L}_{\mathrm{astro},i} \left[\mathcal{L}_{\mathrm{gal}|\mathrm{astro},i}(f_{\mathrm{gal}}) + \mathcal{L}_{\mathrm{exgal}|\mathrm{astro},i}(f_{\mathrm{gal}})
ight] \,,$$

and the total likelihood is the product,

$$\mathcal{L}(f_{\mathrm{gal}}) = \prod_{i} \mathcal{L}_{i}(f_{\mathrm{gal}}).$$

Results

Likelihoods to Probabilities

$$egin{aligned} p_{ ext{bkg},i} &= rac{\mathcal{L}_{ ext{bkg},i}}{\mathcal{L}_{ ext{astro},i} + \mathcal{L}_{ ext{bkg},i}} \ p_{ ext{gal},i} &= p_{ ext{astro},i} rac{\mathcal{L}_{ ext{gal}| ext{astro},i}(\hat{f}_{ ext{gal}})}{\mathcal{L}_{ ext{gal},i}(\hat{f}_{ ext{gal}}) + \mathcal{L}_{ ext{exgal},i}(\hat{f}_{ ext{gal}})} \ p_{ ext{exgal},i} &= p_{ ext{astro},i} rac{\mathcal{L}_{ ext{exgal}| ext{astro},i}(\hat{f}_{ ext{gal}})}{\mathcal{L}_{ ext{gal},i}(\hat{f}_{ ext{gal}}) + \mathcal{L}_{ ext{exgal},i}(\hat{f}_{ ext{gal}})} \end{aligned}$$

$$\sum_{i} p_{\text{gal},i} = 1.7$$
, $\sum_{i} p_{\text{exgal},i} = 29.3$, $\sum_{i} p_{\text{bkg},i} = 1.0$

NBIA Astroparticle Seminar: April 24, 2017 41/43

Event-By-Event Probabilities

At $\hat{f}_{gal} = 0.066$:

Е	id	$p_{ m gal}$	$p_{ m exgal}$	$\pmb{p}_{ m bkg}$	Ε	id	$p_{ m gal}$	$p_{ m exgal}$	$p_{ m bkg}$
2003	35	0.048	0.95	0	152	3	0.0024	0.96	0.041
1140	20	1.8e-4	1	0	143	47	3.9e-4	0.95	0.051
1040	14	0.75	0.25	5.7e-4	137	5	3.7e-4	0.82	0.18
885	45	4.1e-4	1	0	128	30	5.9e-4	1	0
512	13	0.0016	0.98	0.02	117	2	0.42	0.57	0.0066
404	38	0.0035	0.95	0.045	104	48	0.0015	0.99	0.0074
384	33	0.058	0.93	0.016	104	12	0.01	0.99	0.0014
219	22	0.2	0.79	0.0084	101	39	0.001	0.98	0.02
210	26	4.2e-5	0.98	0.018	97	10	1.5e-5	0.99	0.008
199	17	0.0012	0.98	0.019	88	11	1.7e-4	0.93	0.065
165	4	0.0093	0.99	8.2e-4	87	41	9e-5	0.92	0.081
164	44	1.9e-4	0.82	0.18	76	42	3.9e-5	0.99	0.011
159	23	7.4e-6	0.93	0.067	71	19	7.4e-5	1	0
158	52	0.19	0.81	0	66	51	3.2e-4	0.98	0.024
158	46	2e-4	0.99	0.012	63	9	5.5e-5	0.95	0.046
157	40	0.007	0.99	8.7e-4	60	27	0.0013	0.96	0.035

Conclusions

- The sources of UHECRs and astrophysical v's is still an open question.
- UHECRs are still a background-free observable, but with large uncertainties.
- Handling partial sky exposure analytically can be useful.
- High energy neutrinos point at their sources, but carry backgrounds.
- ► The astrophysical neutrino flux is largely extragalactic.
 - \blacktriangleright A small galactic component $\sim 7\%$ is allowed.

Backups

Sample Dipole

Sample Quadrupole

Sample Dipole with Auger's Exposure

Sample Quadrupole with Auger's Exposure

Spherical Harmonics Visualizations

Catalogs

- We consider galactic catalogs.
- The catalog used is the 2MRS.
- Contains 5310 galaxies out to redshift 0.03: 120 Mpc.
- Nearby galaxies need their distances adjusted for peculiar velocities.

Quadrupole Component of Exposure

NBIA Astroparticle Seminar: April 24, 2017 51/43

Rotational Invariance of the Power Spectrum

$$\begin{split} I(\Omega) &= \frac{1}{N} \sum_{i=1}^{N} \delta(\mathbf{u}_i, \Omega) \,, \\ \bar{a}_{\ell}^m &= \frac{1}{N} \sum_{i=1}^{N} Y_{\ell}^{m*}(\mathbf{u}_i) \,, \\ \bar{C}_{\ell} &= \frac{1}{N^2 (2\ell+1)} \sum_{|m| \leq \ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m*}(\mathbf{u}_i) \right|^2 \,. \end{split}$$

The addition formula for spherical harmonics:

$$P_{\ell}(\mathbf{x} \cdot \mathbf{y}) = \frac{4\pi}{2\ell+1} \sum_{|m| \leq \ell} Y_{\ell}^{m*}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y}) \,.$$

e.g. Arfken, Weber: Mathematical Methods for Physicists

$$ar{\mathcal{L}}_\ell = rac{1}{4\pi N} + rac{1}{2\pi N^2} \sum_{i < j} P_\ell(\mathbf{u}_i \cdot \mathbf{u}_j) \,.$$

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 52/43

b10-cut: Analytical Derivation

We conservatively fill in the unknown region of the Galactic distribution with a uniform distribution,

$$I_g(\Omega) = I_{g,>10}(\Omega) + I_{u,<10}(\Omega).$$

$$(a_{\ell}^m)_g = (a_{\ell}^m)_{g,>10} + (a_{\ell}^m)_{u,<10}$$

Note the following properties of the $(a_{\ell}^m)_{u,<10}$:

• $I_{u,<10}$ isn't a function of ϕ .

$$a_\ell^m = 2\pi \sqrt{rac{2\ell+1}{4\pi}} \int P_\ell(x) I(x) dx \delta_{m0} \, .$$

• $I_{u,<10}$ has even parity (the P_{ℓ} have definite parity).

$$(a_{\ell}^{0})_{u,<10} = \sqrt{\frac{2\ell+1}{4\pi}} \int_{0}^{\cos(80^{\circ})} P_{\ell}(x) dx$$

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 53/43

b10-cut: Numerical Verification

Peter B. Denton (NBIA)

NBIA Astroparticle Seminar: April 24, 2017 54/43