Particle Physics at the Highest Energies

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014

UNIVERSITY

Other Projects

Papers collaborated on:

Quantum black holes: detecting low scale gravity using extensive air showers.

Higgs portal $\rightarrow \Delta N_{\mathrm{eff}}$ and dark matter.

Projects in progress:

```
Neutrino energy cutoff \Rightarrow \pi^{\pm} stability.
```

Nuetrino anisotropy.

Extending the Reach of the LHC with Integral Dispersion Relations

and

Cosmic Ray Anisotropies

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 3/29

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 4/29

Peter B. Denton

University of Wisconsin-Madison

Extending the Reach of the LHC with Integral Dispersion Relations

and

Cosmic Ray Anisotropies

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 6/29

Nobel prize for "old" physics found at the LHC.

Nothing "new" (BSM) at the LHC yet.

New physics is constrained to $\mathcal{O}(\text{few})$ TeV.

Suppose there is new physics near (above or below) 14 TeV...

About Integral Dispersion Relations: Key Formulas

Cauchy's integral formula:

$$f(z') = \frac{1}{2\pi i} \oint_{\partial A} \frac{f(z)}{z - z'} dz$$

The optical theorem:

$$\sigma_{\rm tot} = \frac{4\pi}{p} \Im f(\theta = 0)$$

Froissart bound:

$$\sigma_{
m tot}(E) \leq C \log^2(E/E_0)$$

Definitions:

$$\rho(E) \equiv \frac{\Re f(E, t=0)}{\Im f(E, t=0)} \qquad E \equiv \frac{s-u}{4m} \qquad f_{\pm} = \frac{1}{2}(f_{p\bar{p}} \pm f_{pp})$$

About Integral Dispersion Relations: Integration Contour

University of Wisconsin-Madison

About Integral Dispersion Relations: Subtraction

Cauchy + Integration Contour + Reflection Identities:

$$\Re f_{+}(E) = \frac{1}{\pi} \mathcal{P} \int_{m_{p}}^{\infty} dE' \Im f_{+}(E') \frac{2E'}{E'^{2} - E^{2}}$$

$$\Re f_{-}(E) = \frac{1}{\pi} \mathcal{P} \int_{m_p}^{\infty} dE' \Im f_{-}(E') \frac{2E}{E'^2 - E^2}$$

The first integrand scales like $\sigma_{tot}(E')$.

Integral won't converge and the outer circle $\not\rightarrow$ 0.

Need a subtraction to reduce the power: add a pole.

$$\Re f_{+}(E) = \Re f_{+}(0) + \frac{1}{\pi} \mathcal{P} \int_{m_{\rho}}^{\infty} dE' \Im f_{+}(E') \frac{2E^{2}}{E'(E'^{2} - E^{2})}$$

New constant f(0) - not physical.

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 10/29

Integral Dispersion Relations

Subtraction + optical theorem:

$$\begin{split} \rho_{pp}(E)\sigma_{pp}(E) &= \frac{4\pi}{p} \Re f(0) + \frac{E}{p\pi} \mathcal{P} \int_{m_p}^{\infty} dE' \frac{p'}{E'} \left[\frac{\sigma_{pp}(E')}{E' - E} - \frac{\sigma_{p\bar{p}}(E')}{E' + E} \right] \\ \rho_{p\bar{p}}(E)\sigma_{p\bar{p}}(E) &= \frac{4\pi}{p} \Re f(0) + \frac{E}{p\pi} \mathcal{P} \int_{m_p}^{\infty} dE' \frac{p'}{E'} \left[\frac{\sigma_{p\bar{p}}(E')}{E' - E} - \frac{\sigma_{pp}(E')}{E' + E} \right] \\ \text{Since } \lim_{E' \to \infty} \sigma(E')/E' \to 0, \text{ outer circle } \to 0. \\ \text{For integral to converge need } |\sigma_{pp} - \sigma_{p\bar{p}}| \to 0. \\ \text{Experimentally } |\sigma_{pp} - \sigma_{p\bar{p}}| \propto s^{-0.5}: \text{ fast enough (Pomeranchuk).} \\ \text{From data, } f(0) \text{ is small (contributes } < 1 \text{ part in } 10^5 \text{ to } \rho). \end{split}$$

IDRs allow for the calculation of ρ in a model dependent way.

Peter B. Denton

Integral Dispersion Relations: Simple Cross Section

An analytic calculation requires several simplifications:

$$\sigma_{pp}(E) o \sigma_0 \leftarrow \sigma_{p\bar{p}}(E)$$
 $m_p o 0$

Then,

$$\rho = \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{dx}{x^2 - 1} = 0$$

 $x \equiv E'/E$.

Modifying the cross section with a step increase at E'_{\min}, x_{\min} ,

$$\mathcal{I}(x_{\min}) \equiv \int_{x_{\min}}^{\infty} \frac{dx}{x^2 - 1} > 0$$

Peter B. Denton

December 4, 2014 12/29

Peter B. Denton

University of Wisconsin-Madison

Cross Section Modifications

Return $\sigma_{\rm tot} \propto \log^2 E$ and $m_p \neq 0$.

Consider modification of the general form,

$$\sigma(E) = \sigma_{\rm SM}(E)[1+h(E)]$$

where h(E) = 0 for $E < E_{thr}$.

The simplest such modification is $h(E) = D\Theta(E - E_{thr})$.

That is, the cross section doubles at $E = E_{thr}$ for D = 1.

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 15/29

More Physical Modifications

RPV SUSY: Replace one final state particle with a heavier partner.

More Physical Modifications: Parton Approach

We reduce the cross section by a phase space ratio given by

$$\sqrt{rac{\lambda(\hat{s}, M_\chi^2, 0)}{\lambda(\hat{s}, 0, 0)}} = 1 - rac{M_\chi^2}{\hat{s}}$$

We integrate this in terms of the pdfs

$$h_{2}(s, M_{\chi}) = z \sum_{i,j} \int_{x_{1}x_{2} > M_{\chi}^{2}/s} dx_{1} dx_{2} \\ \times f_{i}(x_{1}, M_{\chi}) f_{j}(x_{2}, M_{\chi}) x_{1} x_{2} \left(1 - \frac{M_{\chi}^{2}}{\hat{s}}\right)$$

where
$$z = \sigma_{inel} / \sigma_{tot} \sim 0.7$$
.

More Physical Modifications: Diffractive Approach

Cut final states into two blocks by pseudorapidity and we let M_X be the mass of the more massive one. Let $\xi \equiv M_X^2/s$.

$$rac{d\sigma}{d\xi} = rac{1+\xi}{\xi^{1+\epsilon}} \qquad \qquad \epsilon \sim 0.08$$

The bounds on the above integral change from SM \rightarrow new physics,

$$h_3(s) = z \frac{1 - 2\epsilon + (\epsilon - 1)\xi_{\chi}^{-\epsilon} + \epsilon\xi_{\chi}^{1-\epsilon}}{1 - 2\epsilon + (\epsilon - 1)\xi_{p}^{-\epsilon} + \epsilon\xi_{p}^{1-\epsilon}} \Theta(1 - \xi_{\chi})$$

$$\lim_{s \to \infty} h_3(s) = z \left(\frac{m_p}{M_{\chi}}\right)^{2\epsilon} \approx 0.23 \left(\frac{1\,{\rm TeV}}{M_{\chi}}\right)^{2\epsilon}$$

Total Cross Section Modifications

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 19/29

Measuring ρ at the LHC

Most cited values of ρ are calculated from IDRs.

It is possible to measure ρ in a model independent fashion.

$$\frac{d\sigma}{dt} = \frac{\pi}{k^2} |f|^2 \qquad \qquad \frac{d\sigma}{dt} = \left. \frac{d\sigma}{dt} \right|_{t=0} e^{Bt}$$

B is the measured slope parameter, valid at low |t|.

$$\left. \frac{d\sigma}{dt} \right|_{t=0} = \frac{\pi}{k^2} \left| (\rho + i) \Im f(t=0) \right|^2 = \frac{\rho^2 + 1}{16\pi} \sigma_{\text{tot}}^2$$

Measuring σ_{tot} without ρ is difficult.

Requires an accurate luminosity measurement.

Moreover σ_{tot} only weakly depends on ρ .

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 20/29

Experimental Status

TOTEM: $\rho = 0.145$ at $\sqrt{s} = 7$ TeV (large errors). SM Prediction: $\rho = 0.1345$ at $\sqrt{s} = 7$ TeV. "Signal": $(\rho - \rho_{\rm SM})/\rho_{\rm SM} = 0.0781$ (a 0.1σ "signal"). Excluded: $\rho > 0.32$ at 95%.

IDR Response at $\sqrt{s} = 7$ TeV for Step Function (h_1)

Peter B. Denton

University of Wisconsin–Madison

IDR Response at $\sqrt{s} = 7$ TeV for Parton Approach (h_2)

Peter B. Denton

University of Wisconsin–Madison

IDR Response at $\sqrt{s} = 7$ TeV for Diffractive Approach (h_3)

Peter B. Denton

University of Wisconsin–Madison

Integral Dispersion Relations: Conclusions

IDRs can probe new physics in a largely model independent fashion. Most effective for new physics turning on near the machine energy. Await new data from the 14 TeV run as TOTEM will be upgraded.

Extending the Reach of the LHC with Integral Dispersion Relations

and

Cosmic Ray Anisotropies

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 26/29

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 27/29

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 27/29

EAS from 10 EeV proton primary.

The magnetic field in the Milky Way cannot contain ultra high energy cosmic rays.

UHECRs with energies above $\sim 50~{\rm EeV}$ lose energy due to interactions with the CMB.

UHECR sources must be close \Rightarrow anisotropies.

UHECRs bend in galactic and extragalactic magnetic fields.

No anisotropies found yet.

UHECR Anisotropy

Spherical Harmonics: Distributions on the Sky

General structure can be quantified in terms of Y_{ℓ}^{m} 's which provide an orthogonal expansion of the sky.

The true distribution of UHECRs as seen at earth follows

$$I(\Omega) = \sum_{\ell,m} a_{\ell}^{m} Y_{\ell}^{m}(\Omega) \,.$$

All of the information is encoded in the a_{ℓ}^m .

On earth we see $I(\Omega) = \frac{1}{N} \sum_{i}^{N} \delta(\Omega, \Omega_{i})$.

The true distribution may be estimated by $\bar{a}_{\ell}^{m} = \frac{1}{N} \sum_{i}^{N} Y_{\ell}^{m}(\Omega_{i})$. The power spectrum is rotational invariant.

$$C_\ell = \frac{1}{2\ell+1} \sum_m |a_\ell^m|^2$$

Peter B. Denton

University of Wisconsin-Madison

Identifiable sources: Cen A, Supergalactic plane, etc. use specific Y_{ℓ}^{m} 's.

Each Y_{ℓ}^m partitions the sky into $(\ell + 1)^2/2$ so $\ell_{\max} \approx \lfloor \sqrt{2N} - 1 \rfloor$.

Spherical Harmonics: Possible Sources

Simple Anisotropy Measures

A general anisotropy measure:

$$\alpha \equiv \frac{\mathit{I}_{\max} - \mathit{I}_{\min}}{\mathit{I}_{\max} + \mathit{I}_{\min}} \in [0, 1] \, .$$

Define

$$\alpha_D \equiv \sqrt{3} \frac{|a_1^0|}{a_0^0} \qquad \qquad \alpha_Q \equiv \frac{-3\sqrt{\frac{5}{4}} \frac{a_2^0}{a_0^0}}{2 + \sqrt{\frac{5}{4}} \frac{a_2^0}{a_0^0}} \quad (\text{`New' later}),$$

Then $\alpha_D = \alpha$ for a purely dipolar distribution and $\alpha_Q = \alpha$ for a purely quadrupolar distribution.

Sample Dipole

Sample Quadrupole

Auger's Nonuniform Partial Sky Coverage

Peter B. Denton

December 4, 2014 37/29

Reconstructing a_{ℓ}^{m} 's for Nonuniform Partial Sky Coverage Nonuniform exposure is a manageable problem:

$$ar{a}_\ell^m = rac{1}{N}\sum_i^N Y_\ell^m(\Omega_i) o rac{1}{\mathcal{N}}\sum_i^N rac{Y_\ell^m(\Omega_i)}{\omega(\Omega_i)}\,,$$

where $\mathcal{N} = \sum_{i}^{N} \frac{1}{\omega(\Omega_{i})}$, ω is the exposure function.

Partial sky is more challenging: no information from part of the sky.

Peter B. Denton

University of Wisconsin-Madison

Sample Dipole with Auger's Exposure

Sample Quadrupole with Auger's Exposure

Reconstructing $a_{\ell}^{m'}$ s for Nonuniform Partial Sky Coverage

An alternative formalism to the *K*-matrix approach:

Expand the exposure $\omega(\Omega) = \sum_{\ell,m} c_{\ell}^m Y_{\ell}^m(\Omega)$.

 ω does not depend on RA \Rightarrow only m = 0 coefficients are nonzero.

Fortuitously, $c_2^0 = 0$ for Auger's exposure (nearly equal to zero for Telescope Array).

Quadrupole Component of Exposure

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 42/29

Reconstructing $a_{\ell}^{m'}$ s for Nonuniform Partial Sky Coverage

When reconstructing a pure quadrupole, Auger and TA's exposures may be ignored,

$$b_2^m = a_2^m \left[1 + rac{(-1)^m c_4^0 f(m)}{7\sqrt{4\pi}}
ight]$$

A correction of 0.0546, -0.0364, 0.00909 for |m| = 0, 1, 2.

Quadrupole Reconstruction Technique Effectiveness

December 4, 2014 44/29

Peter B. Denton

Quadrupole Reconstruction Effectiveness

Peter B. Denton

Dipole Reconstruction Effectiveness

Peter B. Denton

Next step is to consider galactic catalogs.

The catalog used is the 2MRS.

Contains 5310 galaxies out to redshift 0.03: 120 Mpc.

Nearby galaxies need their distances adjusted for peculiar velocities.

2MRS Sky Map

Spherical Harmonic Coefficients: Galaxies

Peter B. Denton

University of Wisconsin–Madison

December 4, 2014 49/29

Spherical Harmonic Coefficients: Uniform

Peter B. Denton

University of Wisconsin–Madison

Conclusions

The source(s) of UHECRs is still an open question.

TA has evidence of a warm-spot.

Auger and TA can reconstruct a quadrupole anisotropy without a partial sky penalty.

Auger just (< 2 weeks ago) released a data set tripling their previous release with a hint of anisotropy.

The distribution of galaxies contains more information than just dipole + quadrupole.

Bibliography

References

- PDG, Chin.Phys. C38 (2014) 090001 (2014).
- PBD, T. Weiler, arXiv:1311.1248.
- PBD, L. Anchordoqui, A. Berlind, M. Richardson, T. Weiler, arXiv:1401.5757.
- ▶ PBD, T. Weiler, arXiv:1409.0883.
- P. Sommers, arXiv:astro-ph/0004016.
- ▶ P. Billoir and O. Deligny, arXiv:0710.2290.

Bibliography

Figures

- Auger Collaboration, arXiv:1405.0575.
- ► TA Collaboration, arXiv:1404.5890.

Images

- physicsworld.com/cws/article/news/31764/1/auger
- www.fnal.gov/pub/today/images/images04/auger2.jpg
- www.rogerwendell.com/cosmology.html
- cerncourier.com/cws/article/cern/50218
- jemeuso.riken.jp/en/about1.html
- auger.org/features/shower_simulations.html

Peter B. Denton

University of Wisconsin-Madison

Diffractive Cross Section Reproduces Froissart Bound

The cross section function that goes into the modification h_3 rises like $\log^2 s$ in the appropriate limit:

$$\sigma \propto 1 - \xi_p - \log \xi_p + \left(1 - \xi_p + \xi_p \log \xi_p + \frac{1}{2} \log^2 \xi_p\right) \epsilon + \mathcal{O}(\epsilon^2)$$

with higher order ϵ terms resulting in higher orders of log *s* following the above pattern.

Sample Dipole

Sample Quadrupole

Sample Dipole with Auger's Exposure

Sample Quadrupole with Auger's Exposure

Quadrupole Component of Exposure

Peter B. Denton

University of Wisconsin-Madison

Quantum Black Holes: Production

See N. Arsene, L. Caramete, PBD, O. Micu, arXiv:1310.2205.

The hoop conjecture says that if two particles collide with impact parameter,

$$b \lesssim rac{2\ell_{
m Pl}M}{M_{
m Pl}}$$

a black hole forms.

If there is low scale gravity and/or extra dimensions, these could be seen in EASs.

Such events could constitute $1 - 10^3$ events at Auger.

Assume that it decays $qBH \rightarrow \pi + \pi$.

Leads to a narrower, deeper shower than p, Fe.

Quantum Black Holes: X_{max} at E = 1 EeV

Peter B. Denton

University of Wisconsin-Madison

December 4, 2014 62/29

Quantum Black Holes: X_{max} at E = 1 EeV

Higgs Portal

See L. Anchordoqui, PBD, H. Goldberg, T. Paul, L. Silva, B. Vlcek, T. Weiler, arXiv:1312.2547.

Add a complex scalar S that couples to the Higgs,

$$\mathscr{L} \supset \partial_\mu S^\dagger \partial^\mu S + \mu^2 S^\dagger S - \lambda (S^\dagger S)^2 - g_ heta (S^\dagger S) (\Phi^\dagger \Phi)$$

S gets a VEV $\langle r \rangle$ and the remaining scalar fields, r,ϕ mix to form h, H.

 g_{θ} small \Rightarrow *h* is the SM Higgs.

Higgs Portal

Add a Dirac field with a U(1),

$$\mathscr{L} \supset i \bar{\psi} \partial \!\!\!/ \psi - m_{\psi} \bar{\psi} \psi - rac{f}{\sqrt{2}} \bar{\psi}^{c} \psi S^{\dagger} - rac{f^{*}}{\sqrt{2}} \bar{\psi} \psi^{c} S$$

This leads to two massive Majorana fermions including a WIMP DM candidate.

If the additional Goldstone Boson decouples at $T\sim m_{\mu}$, it will add ~ 0.39 to $N_{
m eff}.$

Planck \pm HST: $N_{\text{eff}} = 3.30, 3.62$.

Higgs Portal: $N_{\rm eff} = 3.39$ Along Yellow Curve

