Sensitivity of the orbiting JEM-EUSO mission to large-scale anisotropies

Peter Denton¹³ Luis Anchordoqui² Andreas Berlind¹ Matthew Richardson¹ Tom Weiler¹

¹Vanderbilt University

²University of Wisconsin

³Presenter

September 26, 2013

[arxiv:]13**.**** (in progress)

JEM-EUSO is BIG

- Uniform systematics across 4π full sky coverage
- ► Increased average exposure: ~ 9 × Auger

UHECR anisotropy techniques

- ► General structure can be quantified in terms of Y^m_ℓ's which provide an orthonormal expansion of the sky.
- Identifiable sources: Cen A, Supergalactic plane, etc. use specific Y^m_ℓ's.
 - Point source dipole: $I \propto Y_0^0 + C_D Y_1^0$
 - Planar source quadrupole: $I \propto Y_0^0 + C_Q Y_2^0$.
 - There exist techniques to reconstruct the direction and the anisotropy measure given a data set.
- ► General $Y_{\ell}^{m'}$ s: each partitions the sky into $\sim \ell^2/2$ so $\ell_{\max} \sim \sqrt{2N}$
- 500 events gives $\ell_{\rm max} \sim$ 30.

Sample dipole

Sample quadrupole

Dipole/quadrupole reconstruction power

How well can the anisotropy be reconstructed for a simulated dipole or a quadrupole assuming knowledge of a pure dipole/quadrupole?

- Over its lifetime, Auger might see 250 events with energies
 E > 55 EeV. EUSO might see 410 or 680 events over its lifetime of 3 or 5 years respectively.
- I simulated either a dipole or a quadrupole with either 250, 410, or 680 events and reconstructed the direction and strength of the anisotropy:

$$\alpha = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \in [0, 1]$$

Dipole anisotropy: earth (partial-sky) vs. space (full-sky)

Dipole anisotropy: $N_{\rm CRs}$

Dipole anisotropy: discovery power

Quadrupole anisotropy: discovery power

10/15

Spherical harmonics: formulas

Spherical harmonics are orthonormal. An intensity profile can be expanded as

$$I(\theta,\phi) = \sum_{\ell m} a_{\ell m} Y_{\ell}^{m}(\theta,\phi)$$

where

$$\mathsf{a}_{\ell m} = \frac{1}{N} \sum_{i} Y_{\ell}^{m}(\mathsf{u}_{i})$$

We also define the power spectrum as

$$c_{\ell} = \frac{1}{2\ell + 1} \sum_{m} a_{\ell m}^2$$

Spherical harmonics of 5310 nearby galaxies z < 0.03

Spherical harmonics of 5310 random directions

Future work

- Dipole and quadrupole rejection.
- Combine a CR propagation code with GZK and magnetic bending effects with galactic surveys and a power spectra analysis.
- Possibly relating specific galaxy types and and a signal in the power spectrum.

There still is a lot of theory and simulation work to be done for JEM-EUSO and we hope for large real data sets to analyze!

Dipole anisotropy: directional accuracy

Quadrupole anisotropy: directional accuracy

Sample dipole

Sample quadrupole

Relative JEM-EUSO exposure

