Understandlng the dynamlcs of core collapse
S supernovae through neutrmos
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Neutrinos from supernovae
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Neutrinos from supernovae

Hydrodynamical

l Supernova explosion!
instabilities

~ 99% of energy released as neutrinos!

Neutrinos propagate

Stellar core-collapse

Neutrinos Detected
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Rate [1/ms]

100 200 300
Time [ms]
Neutrino signal probes SN dynamics!

lceCube Observatory
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Neutrinos as probes

1. Hydrodynamical instabilities
2. Progenitor rotation

3. Black-hole formation
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Neutrinos as probes :
Hydrodynamical instabilities

r N
What hydrodynamical instabilities can form during the core-collapse?

How are these reflected in the neutrino emission?

— Based on 3D model of 27 and 15 M, progenitor

For details please see: Tamborra, Raffelt, Hanke, Janka, Miller, Phys. Rev. D 90 (2014)
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Neutrinos as probes - Hydrodynamics

Garching Group
Max-Planck-Institut fur Astrophysik
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Neutrinos as probes - Hydrodynamics

( What hydrodynamical instabilities can form during the core-collapse? )

Convection

SASI —— dipolar oscillating deformation of the shockwave along a plane

Convection — higher order/frequency deformations of the shockwave
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Neutrinos as probes - Hydrodynamics (SASI)

C How are the hydrodynamics reflected in the neutrino emission? )
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See also: Tamborra, Raffelt, Hanke, Janka, Muller, Phys. Rev. D 90 (2014)
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Neutrinos as probes - Hydrodynamics (Convection)

C How are the hydrodynamics reflected in the neutrino emission? )
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- Convection presents as small-scale fluctuations of the neutrino luminosity

See also: Tamborra, Raffelt, Hanke, Janka, Muller, Phys. Rev. D 90 (2014)
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Hydrodynamical instabilities - LESA

( What hydrodynamical instabilities can form during the core-collapse? )

» Lepton-number Emission Self-sustained Asymmetry

Caused by asymmetric convection in the PNS which leads to:

1. Hemispheric asymmetric electron fraction profile

2. Excess of U, comparedto U, flowingfrom one hemisphere

Tamborra, Hanke, Janka, Mdller, Raffelt, Marek. Apd. 792 (2014)
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Neutrinos as probes - Hydrodynamics (LESA)

( How are the hydrodynamics reflected in the neutrino emission? )

Normalized Electron Neutrino Lepton Number Flux
( 15 Mg, Non Rotating Model )

(Ny, — Ny, )/<(Ny, — Ny,)>

Time: 244.6973 ms

LESA — (dipolar) asymmetry of electron-lepton number flux
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Neutrinos as probes - Hydrodynamics (LESA)

( How are the hydrodynamics reflected in the neutrino emission? )

Electron-fraction profile
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LESA — (dipolar) anti-correlation between emitted electron neutrino flavors

See also: Tamborra, Hanke, Janka, Mdller, Raffelt, Marek. ApJ. 792 (2014)
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Neutrinos as probes - Hydrodynamics

( How are the hydrodynamics reflected in the neutrino emission? )

Hydrodynamics reflected in neutrino luminosity:
1. Sinusoidal modulations characteristic of SASI
2. Small-scale fluctuations characteristic of convection

3. Regions of excess ELN flux characteristic of LESA
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Neutrinos as probes

1. Hydrodynamical instabilities
2. Progenitor rotation

3. Black-hole formation
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Neutrinos as probes - Progenitor rotation

What are the effects of rotation on hydrodynamical instabilities?

Can we constrain rotational velocity through neutrinos?

Three self-consistent 15M_ models:
1. Non-rotating model
2. Slow rotating (spin period of 6000 s)

3. Fast rotating model (spin period of 20 s)

Summa, Janka, Melson, Marek, Astrophys. J. 852, 28 (2018)
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Neutrinos as probes - Progenitor rotation

( What are the effects of rotation on hydrodynamical instabilities? )

Non Rotating Model Slow Rotating Model

Equatorial Slice | Equatorial Slice
Time: 258 ms

—-200 0 200 40(
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- Large-scale deformations indicate SASI in the non rotating model

- Dampened in the slow rotating model, instead stronger convection
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Neutrinos as probes - Progenitor rotation

( What are the effects of rotation on hydrodynamical instabilities? )

lceCube Event Rate (15 My)
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- Sinusoidal SASI modulations present in non-rotating model
- Amplitude decreased in the slow rotating model

- Small-scale fluctuations present in fast rotating model
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Frequency [Hz]

Neutrinos as probes - Progenitor rotation

C Can we constrain rotational velocity through detectable neutrinos? )
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- Rotation weakens the SASI peak
- Less dominant SASI region, wider spread in high frequencies
- i.e. Small-scale fluctuations are resolved by spectrograms

- Suggests again an interplay between SASI and convection, brought on by rotation
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Neutrinos as probes - Progenitor rotation

( What are the effects of rotation on hydrodynamical instabilities? )

15M4, Non Rotating Model 15Mg, Slow Rotating Model 15Mg, Fast Rotating Model
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- Anti-correlation between v, and 7, luminosities dampened by rotation

- Suggests regions of excess ELN flux smeared out by rotating matter
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Neutrinos as probes - Progenitor rotation

( What are the effects of rotation on hydrodynamical instabilities? )

15 My, Non Rotating 15 My, Slow Rotating 15 Mg, Fast Rotating

Time: 258 ms Time: 273 ms Time: 475 ms
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- Radial electron-fraction asymmetry in the non-rotating model

- Becomes increasingly spherically symmetric with rotational velocity
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Neutrinos as probes - Progenitor rotation

( What are the effects of rotation on hydrodynamical instabilities?
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- Radial kinetic energy suppressed in the fast rotating model

- Rotation weakens convective activity along the radial direction

- LESA is suppressed by rotation
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Neutrinos as probes - Progenitor rotation

[ What are the effects of rotation on hydrodynamical instabilities? J

- Rotation destroys large-scale dipolar deformation of the shockwave
- Induces instead, small-scale features

- Suggests more intricate interplay between SASI and convection

- Rotation weakens radial convection in PNS

- LESA is suppressed by rapid rotation
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Neutrinos as probes

1. Hydrodynamical instabilities
2. Progenitor rotation

3. Black-hole formation
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Neutrinos as probes :
Black-hole formation

r N
Can we see black-hole forming stellar collapses through neutrinos?

Are there unique signatures in the neutrino emission?

— Based on two 3D progenitor models of 40 and 75 Mg

For details please see: Walk, Tamborra, Janka, Summa, Kresse. Phys. Rev. D. 101 (2020)
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Neutrinos as probes - Black-hole formation

( Can we see black-hole-forming stellar collapses through neutrinos? )

- Neutrinos are amongst the only probes of BH-forming collapses

- High event statistics makes BH-forming collapses detectable up to great distances
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Neutrinos as probes - Black-hole formation

( Are there unique signatures in the neutrino emission? )

Detectable IceCube Event Rate
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- Two long, strong SASI episodes detectable for the 40M, BH-forming progenitor
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Rate [1/ms]

Frequency [Hz]

Neutrinos as probes - Black-hole formation

C Are there unique signatures in the neutrino emission? )

Detectable IceCube Event Rate

- Model shows two SASI episodes

- SASI frequency clearly traceable

- i.e. evolves (oscillates) with time

- Second SASI episode has a higher

frequency than the first
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Neutrinos as probes - Black-hole formation

C Are there unique signatures in the neutrino emission? )
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Conclusions

- Neutrino signal reflects hydrodynamics of the core-collapse

- Rotation destroys large-scale global deformations of the shockwave

- Induces small-scale fluctuations instead

- Rotation suppresses dipolar radial flow from the PNS

- Thus, LESA is inhibited by strong rotation

- Neutrinos are key probes of BH formation, offering excellent detection prospects

- Neutrino emission prior to BH formation reflects interesting physics

[ Neutrinos as essential in exploring core-collapse supernovae! J
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