

Precision measurements in the DUNE Near Detector Complex

Zahra Tabrizi

Virginia Tech/CNP

Based on:

- Ballett, Hostert, Pascoli, Perez-Gonzalez, Tabrizi and Funchal, JHEP 1901, 119 (2019)
- de Gouvêa, Machado, Perez-Gonzalez and Tabrizi, arXiv:1912.06658

Brookhaven Neutrino Theory Virtual Seminars

April 20th 2020

Outline

- Neutrino Trident production
- Neutrino-Electron scattering
- Measuring the Weak Mixing Angle at DUNE
- Conclusion

Open Questions:

- What is the order of neutrino masses?
- What is the value of the CP phase?
- Is neutrino its own anti particle?
- What is the origin of neutrino mass?
- What is the absolute neutrino masses?
- Are there more than three neutrinos?

We need next generation long baseline neutrino experiments!

Physics goals of near detectors:

Primary role of the ND is to study the systematic uncertainties.

Neutrino Trident Scattering at Near Detectors

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

Neutrino Trident Scattering

$$u_{lpha} + \mathcal{N}
ightarrow
u_{eta} + \ell_{\gamma}^+ + \ell_{\delta}^- + \mathcal{N}$$

Production of a **charged lepton pair** in the scattering of a **neutrino**

in the Coulomb field of a heavy nucleus/nucleon

 $\frac{\sigma_{\rm CHARM \ II}}{\sigma_{\rm SM}} = 1.58 \pm 0.57$

 $\frac{\sigma_{\rm CCFR}}{\sigma_{\rm SM}} = 0.82 \pm 0.28$

 $\frac{\sigma_{\rm NuTeV}}{\sigma_{\rm SM}} = 0.67 \pm 0.27$

04/20/2020

Zahra Tabrizi, Virginia Tech

Neutrino Trident Scattering

$$u_{lpha} + \mathcal{N}
ightarrow
u_{eta} + \ell_{\gamma}^{+} + \ell_{\delta}^{-} + \mathcal{N}$$

Production of a charged lepton pair

in the scattering of a neutrino

in the Coulomb field of a heavy nucleus/nucleon

Neutrino	Antineutrino	SM Contributions
$\nu_{\mu} ightarrow u_{\mu} \mu^{+} \mu^{-}$	$\bar{ u}_{\mu} ightarrow ar{ u}_{\mu} \mu^{+} \mu^{-}$	CC, NC
$\nu_{\mu} \rightarrow \nu_{e} e^{+} \mu^{-}$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} e^{-} \mu^{+}$	CC
$ \nu_{\mu} \rightarrow \nu_{\mu} e^+ e^- $	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} e^+ e^-$	NC
$\nu_e \rightarrow \nu_e e^+ e^-$	$\bar{\nu}_e \rightarrow \bar{\nu}_e e^+ e^-$	CC, NC
$ u_e \rightarrow \nu_\mu \mu^+ e^- $	$\bar{\nu}_e \rightarrow \bar{\nu}_\mu e^+ \mu^-$	CC
$\nu_e ightarrow u_e \mu^+ \mu^-$	$\bar{\nu}_e \rightarrow \bar{\nu}_e \mu^+ \mu^-$	NC

Observed

$$V_{\alpha\beta\kappa}(A_{\alpha\beta\kappa}) \equiv g_V^\beta(g_A^\beta)\delta_{\beta\kappa} + \delta_{\alpha\beta}$$

Measuring neutrino trident events give information on vector/axial couplings

How rare is it?

Trident cross section:

$$\nu_{\alpha}(p_1) + \mathscr{H}(P) \to \nu_{\alpha \operatorname{or} \kappa(\beta)}(p_2) + \mathscr{\ell}_{\beta}^{-}(p_4) + \mathscr{\ell}_{\kappa}^{+}(p_3) + \mathscr{H}(P')$$

Equivalent Photon Approximation (EPA): The full cross section is related to the cross section of the neutrino scattering with a real photon, multiplied by the probability of creating a virtual photon.

EPA assumptions

1) Neglecting the L contribution ($h^{\rm L}(q^2, \hat{s}) \sigma^{\rm L}_{\nu\gamma}(q^2, \hat{s}) \approx 0$).

2) Taking the T contribution of the cross section to be on-shell ($\sigma_{\nu\gamma}^{\rm T}(q^2, \hat{s}) \approx \sigma_{\nu\gamma}^{\rm T}(0, \hat{s})$).

$$\sigma_{\rm t}(P_i + C_s \to P_f + C_s) \approx \int dP(Q^2, \hat{s}) \, \sigma_{\gamma}(P_i + \gamma \to P_f; \hat{s}, Q^2 = 0)$$

EPA assumptions

1) Neglecting the L contribution ($h^{\rm L}(q^2, \hat{s}) \sigma^{\rm L}_{\nu\gamma}(q^2, \hat{s}) \approx 0$).

2) Taking the T contribution of the cross section to be on-shell ($\sigma_{\nu\gamma}^{\rm T}(q^2, \hat{s}) \approx \sigma_{\nu\gamma}^{\rm T}(0, \hat{s})$).

$$\sigma_{t}(P_{i} + C_{s} \rightarrow P_{f} + C_{s}) \approx \int dP(Q^{2}, \hat{s}) \sigma_{\gamma}(P_{i} + \gamma \rightarrow P_{f}; \hat{s}, Q^{2} = 0)$$

$$(QED)$$

$$\sigma_{\gamma}^{QED}(P_{i} + \gamma \rightarrow P_{f}; \hat{s}, 0) \propto \frac{1}{\hat{s}}$$

$$Decreases with$$
increasing transferred
four-momentum
$$On-shell >> off-shell$$

$$On-shell >> off-shell$$

$$Decreases with increases with increase$$

EPA approximation doesn't work. Full 4PS calculation must be done!!!

Trident rates at LAr Detectors

$$N = \text{time} \times \# \text{ of targets} \times \text{efficiency} \times \int_{E_i}^{E_f} dE_{\nu} \frac{d\phi(E_{\nu})}{dE_{\nu}} \sigma(E_{\nu})$$

Channel	SBND	$\mu \mathbf{BooNE}$	ICARUS	DUNE ND	ν STORM ND
Total $e^{\pm}\mu^{\mp}$	10	0.7	1	2993 (2307)	191
	2	0.1	0.2	692(530)	41
Total e^+e^-	6	0.4	0.7	1007 (800)	114
	0.7	0.0	0.1	143 (111)	14
Total $\mu^+\mu^-$	0.4	0.0	0.0	286 (210)	11
	0.4	0.0	0.0	196 (147)	9

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

Coherent (upper) and diffractive (lower) trident events for (anti)neutrino mode.

Trident rates at LAr Detectors

$$N = \text{time} \times \# \text{ of targets} \times \text{efficiency} \times \int_{E_i}^{E_f} dE_{\nu} \frac{d\phi(E_{\nu})}{dE_{\nu}} \sigma(E_{\nu})$$

Trident background analysis

Genuine dilepton production is rare, but misID of particles is the problem.

		Channel	$N_{\rm B}^{\rm misID}/N_{ m CO}$,	$N_{\rm B}^{\rm had}/N_{\rm CO}$	c	Ν	$_{\rm B}^{\rm kin}/{ m N}_{ m O}$	cc	
misID		$e^{\pm}\mu^{\mp}$	1.67 (1.62) >	$< 10^{-4}$	2.68 (4.31)	$) \times 10^{-1}$	-5 4.	40 (3.1	$(7) \times 10^{-10}$	-7
av ag a [±]		e^+e^-	2.83 (4.19) >	$< 10^{-4}$	1.30 (2.41)	$) \times 10^{-1}$	-4 6.	54 (14	$(1) \times 10^{-1}$	-6
$\gamma \text{ as } e^{\perp}$	$\mu^+\mu^-$	2.66 (2.73) >	$< 10^{-3}$	10.4 (9.75)	$) \times 10^{-1}$	-4 3.	36 (3.1	$(0) \times 10^{-10}$	-8	
γ as e^+e^-					* CC	CC	CC	CC	CC	
1 00 0 0				u mode	$N_{\rm tot}^{\circ\circ\circ}$	$r_{\nu_{\mu}}^{000}$	$r_{\overline{\nu}_{\mu}}^{CC}$	$r_{\nu_e}^{000}$	$r_{\overline{\nu}_e}^{\odot}$	
π^{\pm} as μ^{\pm}				$\overline{\nu}$ -mode	$4.23 \times 10^{-1.74} \times 10^{-1.74}$	0.201	0.790	0.001	0.001	
,					$N_{ m tot}^{NC}$	$r^{NC}_{ u_{\mu}}$	$r_{\overline{ u}_{\mu}}^{NC}$	$r_{ u_e}^{NC}$	$r^{NC}_{\overline{ u}_e}$	
				ν -mode	1.48×10^8	0.956	0.037	0.006	0.001	
				$\overline{\nu}$ -mode	7.58×10^7	0.157	0.835	0.003	0.005	

Reaching background rates of $O(10^{-6}-10^{-5})$ times the CC rate is necessary to observe trident events at DUNE ND, which is an attainable goal in a LAr detectors.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

We apply consecutive cuts on the background, starting with cuts on the separation angle $\Delta \theta$ (red), both charged lepton angles to the beamline (θ_+ and θ_-) (orange) and the invariant mass.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

Zahra Tabrizi, Virginia Tech

Trident rates at other Near Detectors

Experiment	Material	Baseline (m)	Exposure (POT)	Fiducial Mass (t)	\mathbf{E}_{ν} (GeV)
INGRID	Fe	280	$3.9 \times 10^{21} \ [10^{22}] \ \text{T2K-I} \ [\text{T2K-II}]$	99.4	0 - 4
MINOS[+]	Fe and C	1040	$10.56(3.36)[9.69] imes 10^{20}$	28.6	0 - 20
NOνA	C_2H_3Cl and CH_2	1000	8.85(6.9) $[36(36)] \times 10^{20} [NO\nu A-II]$	231	0 - 20
$MINER \nu A$	$\mathrm{CH},\mathrm{H}_{2}\mathrm{O},\mathrm{Fe},\mathrm{Pb},\mathrm{C}$	1035	$12(12) \times 10^{20}$	7.98	0 - 20

All have finished data taking or are still running

Trident rates at other Near Detectors

INGRID

Channel	T2K-I	T2K-II	MINOS	MINOS+	$NO\nu A-I$	$NO\nu A-II$	$MINER \nu A$
Total $\mathrm{e}^\pm\mu^\mp$	563	1444	222 (56)	730	83 (72)	340 (374)	149(102)
	96	246	46 (11)	151	25 (22)	102(114)	56 (39)
Total e^+e^-	277	711	61 (15)	62	29 (22)	119 (114)	39 (27)
	24	62	9 (2)	8	4 (4)	16 (21)	10 (7)
Total $\mu^+\mu^-$	30	76	26 (6)	86	9 (9)	37 (47)	18 (13)
	21	54	15 (3)	49	8 (8)	34 (36)	18 (13)

Coherent (upper) and diffractive (lower) trident events for (anti)neutrino mode.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

04/20/2020

Zahra Tabrizi, Virginia Tech

$$\frac{d\sigma}{dE_R} = \frac{2G_F^2 m_e}{\pi} \left\{ g_1^2 + g_2^2 \left(1 - \frac{E_R}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e E_R}{E_\nu^2} \right\}$$
$$\simeq 1.72 \times 10^{-41} \left\{ g_1^2 + g_2^2 \left(1 - \frac{E_R}{E_\nu} \right)^2 \right\} \frac{\mathrm{cm}^2}{\mathrm{GeV}}$$

We translate neutrino-electron scattering measurements into a determination of the weak mixing angle at low scales.

$ u_{lpha}$	g_1	$g_1(\mathrm{SM})$	g_2	$g_2(\mathrm{SM})$
$ u_e $	$1 + (g_V + g_A)/2$	$1/2 + s_W^2$	$(g_V\!-\!g_A)/2$	s_W^2
$ u_{\mu, au}$	$(g_V\!+\!g_A)/2$	$-1/2\!+\!s_W^2$	$(g_V\!-\!g_A)/2$	s_W^2
$ar{ u}_e$	$(g_V\!-\!g_A)/2$	s_W^2	$1+(g_V+g_A)/2$	$1/2 + s_W^2$
$ar{ u}_{\mu, au}$	$(g_V\!-\!g_A)/2$	s_W^2	$(g_V\!+\!g_A)/2$	$-1/2 + s_W^2$

Process	Total cross-section
$ u_e + e^- $	$\left(G_{\mathrm{F}}^2 s/4 \pi\right) \left[\left(1+2 \sin^2 artheta_{\mathrm{W}} ight)^2 + rac{4}{3} \sin^4 artheta_{\mathrm{W}} ight] \simeq 93 s/\mathrm{MeV}^2$
$\bar{\nu}_e + e^-$	$\left(G_{ m F}^2s/4\pi ight)\left[rac{1}{3}\left(1+2\sin^2artheta_{ m W} ight)^2+4\sin^4artheta_{ m W} ight]\simeq 39s/{ m MeV^2}$
$ u_{\mu, au} + e^-$	$\left(G_{\mathrm{F}}^2 s/4 \pi\right) \left[\left(1-2 \sin^2 artheta_{\mathrm{W}} ight)^2 + rac{4}{3} \sin^4 artheta_{\mathrm{W}} ight] \simeq 15 s/\mathrm{MeV}^2$
$ar{ u}_{\mu, au} + e^-$	$\left(G_{\mathrm{F}}^{2} s/4 \pi\right) \left[\frac{1}{3} \left(1-2 \sin^{2} \vartheta_{\mathrm{W}}\right)^{2}+4 \sin^{4} \vartheta_{\mathrm{W}}\right] \simeq 13 s/\mathrm{MeV}^{2}$

$$s = 2 \, m_e \, E_{\nu}$$

The approximate ratios of the four cross-sections:

$$\sigma_{\nu_e}: \sigma_{\bar{\nu}_e}: \sigma_{\nu_{\mu,\tau}}: \sigma_{\bar{\nu}_{\mu,\tau}} \simeq 1: 0.42: 0.16: 0.14$$

How many events at DUNE ND?

Channel	On axis	
$\nu_{\mu}e \to \nu_{\mu}e$	27,705	 neutrino beam
	2,888	 anti-neutrino beam
$\left \bar{\nu}_{\mu} e ightarrow \bar{\nu}_{\mu} e ight.$	2,066	
	21,926	
$\nu_e e \rightarrow \nu_e e$	2,234	
	782	
$\bar{\nu}_e e \to \bar{\nu}_e e$	226	
	705	

Approximately 60,000 nu-e events for 75 tonnes-7 years!

Jaewon Park, PhD thesis

The main source of background is CC quasi-elastic (CCQE) v_e scattering.

A cut on the angular distribution can suppress the background!

Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

$$\frac{d\sigma}{dE_R} \simeq 1.72 \times 10^{-41} \left\{ g_1^2 + g_2^2 \left(1 - \frac{E_R}{E_\nu} \right)^2 \right\} \frac{\mathrm{cm}^2}{\mathrm{GeV}}$$

$ u_{lpha}$	g_1	$g_1(\mathrm{SM})$	g_2	$g_2(\mathrm{SM})$
ν_e	$1 + (g_V + g_A)/2$	$1/2 \! + \! s_W^2$	$(g_V\!-\!g_A)/2$	s_W^2
$\overline{ u_{\mu, au}}$	$(g_V\!+\!g_A)/2$	$-1/2\!+\!s_{W}^{2}$	$(g_V\!-\!g_A)/2$	s_W^2
$\bar{ u}_e$	$(g_V\!-\!g_A)/2$	s_W^2	$1+(g_V+g_A)/2$	$1/2 \! + \! s_W^2$
$\overline{ u}_{\mu, au}$	$(g_V\!-\!g_A)/2$	s_W^2	$(g_V\!+\!g_A)/2$	$-1/2 + s_W^2$

There is an exact degeneracy in the differential cross section for v_{μ} – e scattering under the transformations:

$$(g_V, g_A) \rightarrow (g_A, g_V)$$
 and $(g_V, g_A) \rightarrow (-g_V, -g_A)$

Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

$$\frac{d\sigma}{dE_R} \simeq 1.72 \times 10^{-41} \left\{ g_1^2 + g_2^2 \left(1 - \frac{E_R}{E_\nu} \right)^2 \right\} \frac{\mathrm{cm}^2}{\mathrm{GeV}}$$

$ u_{lpha}$	g_1	$g_1(\mathrm{SM})$	g_2	$g_2(\mathrm{SM})$
ν_e	$1 + (g_V + g_A)/2$	$1/2 \! + \! s_W^2$	$(g_V\!-\!g_A)/2$	s_W^2
$\overline{ u_{\mu, au}}$	$(g_V\!+\!g_A)/2$	$-1/2 + s_W^2$	$(g_V\!-\!g_A)/2$	s_W^2
$\bar{ u}_e$	$(g_V\!-\!g_A)/2$	s_W^2	$1+(g_V+g_A)/2$	$1/2 \! + \! s_W^2$
$\bar{ u}_{\mu, au}$	$(g_V\!-\!g_A)/2$	s_W^2	$(g_V\!+\!g_A)/2$	$-1/2 + s_W^2$

There is an exact degeneracy in the differential cross section for v_{μ} – e scattering under the transformations:

$$(g_V, g_A) \rightarrow (g_A, g_V)$$
 and $(g_V, g_A) \rightarrow (-g_V, -g_A)$

There are half solutions for v_e – e scattering:

$$(g_V, g_A) \to (g_A, g_V)$$

CHARM-II measured the couplings from the scattering of muon-neutrinos on electrons

P. Vilain et al. (CHARM-II), Phys. Lett. B335, 246 (1994).

DUNE-PRISM: a near detector that is capable of moving in the direction perpendicular to the neutrino-beam axis.

DUNE TDR, arXiv: 2002.03005

DUNE-PRISM: a near detector that is capable of moving in the direction perpendicular to the neutrino-beam axis.

Although the neutrino flux has prohibitively large uncertainties, the ratios of on-axis to offaxis fluxes are dictated only by meson-decay kinematics and thus are much better understood.

DUNE TDR, arXiv: 2002.03005

de Gouvêa, Machado, Perez-Gonzalez and <u>ZT</u> arXiv:1912.06658 (In press)

Less statistics in the off-axis locations:

Channel	0 m	6 m	12 m	18 m	24 m	30 m	36 m
$\nu_{\mu}e \to \nu_{\mu}e$	3,958	2,671	882	398	213	127	83
	413	352	170	96	60	43	31
$\bar{\nu}_{\mu}e \rightarrow \bar{\nu}_{\mu}e$	295	232	114	64	40	26	20
	3,132	2,068	679	284	151	90	59
$\nu_e e \rightarrow \nu_e e$	319	226	132	76	45	29	19
	112	88	63	38	24	17	13
$\bar{\nu}_e e \to \bar{\nu}_e e$	32	31	20	13	9	6	4
	101	78	41	24	14	9	6

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

The relevance of the v_e events grows significantly with the off-axis angle.

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

Error bars illustrating the statistical and systematic errors, are included for the SM case.

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

Both DUNE on-axis and CHARM-II have almost pure v_{μ} flux and suffer from a four-fold degeneracy.

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

DUNE $v + \overline{v}$ modes, 90% C.L. 0.6 -0.40 - PRISM $- \nu - e$ --- On-Axis 7y - v - e-0.450.4-- PRISM – Ψ $\sin^2\theta$ -0.50--- On-Axis 7y - ψ 0.2 - 0.55-0.60 <u>-0.2</u> CHARM-II -0.10.0 0.1<===== 0.0 g -0.2TEXONO -0.4 -0.6^{l} -0.4-0.20.00.20.40.6 -0.6 g_V

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

The trident cross section is more involved, in the limit where the muon mass vanishes, all cross sections are invariant under $g_V \leftrightarrow g_A$.

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

The trident cross section is more involved, in the limit where the muon mass vanishes, all cross sections are invariant under $g_V \leftrightarrow g_A$.

$$\begin{split} m_{e}, m_{\mu} &\to 0 \\ & \sigma \sim g_{V}^{2} + g_{A}^{2} \qquad (\nu_{\mu} \; e^{+}e^{-}) \\ & \sigma \sim (g_{V} + 1)^{2} + (g_{A} + 1)^{2} \qquad (\nu_{\mu} \; \mu^{+}\mu^{-}) \end{split}$$

Lepton masses break the final degeneracy!

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658

We translate the neutrino–electron and trident scattering measurements into a determination of the vector and axial couplings of the electron to the Z-boson and the weak mixing angle at low scales.

in the modified minimal subtraction scheme:

$$\sin^2\theta_W(\mu)\equiv \frac{g'^2(\mu)}{g^2(\mu)+g'^2(\mu)}$$

The most precise measurement of $\sin^2\theta_W$ using neutrino scattering, at $\langle Q \rangle \simeq 4.5$ GeV.

Deviates from the LEP measurement at 3σ level.

$$R^{\nu(\bar{\nu})} = \frac{\sigma(\nu(\bar{\nu})N \to \nu(\bar{\nu})X)}{\sigma(\nu(\bar{\nu})N \to \ell^{-(+)}X)} \approx g_L^2 + 2g_R^2$$

 $\sin^2 \theta_W(\langle Q^2 \rangle = 20 \text{ GeV}^2) = 0.2277 \pm 0.0013 \pm 0.0009$

G. P. Zeller et al. (NuTeV), Phys. Rev. Lett. **88**, 091802 (2002)

DUNE-ND can be used to measure $sin^2\theta_W$ with better than 2% precision, at $\langle Q^2 \rangle$ =(40 MeV)²

de Gouvêa, Machado, Perez-Gonzalez and **ZT** arXiv:1912.06658 (In press)

Conclusion:

- The future DUNE experiment opens up the possibility to perform many measurements of rare neutrino processes at near detectors.
- We study Neutrino trident and Neutrino-Electron scatterings at DUNE.
- We investigate the sensitivity of DUNE-PRISM, and find that it will qualitatively impact our ability to constrain the weak couplings of the electron.
- Trident measurements could contribute to break the final degeneracy.
- DUNE can achieve competitive measurements and test (g_V, g_A) without the aid of external data.
- The DUNE near-detector can be used to measure $\sin^2\theta_W$ with better than 2% precision.

Thanks for your attention