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Addressing Neutrino-Oscillation Physics
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A quantitative knowledge of o(E) and fs(E) is crucial to precisely extract v oscillation parameters



To study neutrinos we need nuclel

¢ Where does Nuclear Physics come into play
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Utilize heavy target in neutrino detectors to maximize interactions— understand nuclear structure
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Outline of the talk

1st Part of the Presentation

inclusive cross section
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 Ab-initio calculations (GFMC)
—able to describe how nuclei
emerge starting from neutron
and proton interactions—
provide an accurate predictions
of the QE region including one-
and two-body currents

Quasielastic scattering on
a nucleus:
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2no Part of the Presentation

Inclusive cross section
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* More approximate approach:
Extended Factorization scheme
+ Semi-phenomenological SF
have been introduced to tackle
QE, dip and m-production
regions.

Pion production: RES
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Outline of the talk

3nd Part of the Presentation

Synergistic effort among these

) three components:
what we are doing / plan to do
J for the event-generator

component




Theory of lepton-nucleus scattering

g/
The cross section of the process in which a lepton
scatters off a nucleus is given by ~, Z, W
do o< L*P Ry
Nuclear response to the electroweak probe: / W)
Ras(w,q) = > (OLJL(@)|f){f7s(@)[0)6(w — Ef + Ey)
J

The initial and final wave functions describe many-body states:

0) = [Tg) L |f) = [UF), [y, We =), [, o), Wyt

One and two-body current operators




The basic model of nuclear theory

At low energy, the effective degrees of freedom are pions and nucleons:

2
H:Z;:;’L | Zvij—l— Z V;Jk—|—

1< 1<g<k

1-body 2-body 3-body
N N N N N
N N N N N

The electromagnetic current is constrained by the Hamiltonian through the continuity equation
: 0 .. 40
V- Jen +ilH, T ] =0 vij,Ji] # 0

The above equation implies that the current operator includes one and two-body contributions
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Quantum Monte Carlo approach

We want to solve the Schrodinger equation
HY(R;s1...84,71...TA) = EV(R;81...54,T1...7T4)

Any trial wave function can be expanded in the complete set of eigenstates of the the
Hamiltonian according to

W) = ch’\l}n> H|Y,) = E,|¥,)

n

QMC techniques projects out the exact lowest-energy state: ¢~ (/ —E0)7 W) — W)
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The system is cooled down by evolving it in time
& B. Pudliner et al., PRC 56, 1720 (1997)



GFMC electron 4He-cross sections

Virtually exact results for nuclear electroweak responses in the
quasi-elastic region up to moderate values of q.
Initial and final state interactions fully accounted for.

Computational cost grows exponentially with the number of
particles: currently limited to 12C

& N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501
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- Very good agreement in the quasielastic region when: one- and two-body currents are included
* Peak on the right: 1 production can not be described within this approach



GFMC CC v, 12C-cross sections

& A.Lovato, NR et al, arXiv:20Q3.07710, PRX in press
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https://arxiv.org/pdf/2003.07710.pdf

Addressing future precision experiments

* Liquid Argon TPC Technolo & J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012)
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* The dominant reaction mechanism changes dramatically over the region of interest to oscillation
experiment



Factorization Scheme and Spectral Function

For sufficiently large values of |q|, the factorization scheme can be applied under the assumptions

Wy) = p) @ [Wy)a

p)
: —
- E ( 3 )} We)a_
‘]CV _ Ja | O> ‘ f>A 1
)
The nuclear cross section is given in terms of the one %??P(k,E) [Gev™]
describing the interaction with individual bound e

nucleons

doa = | dEd’k donP(k, E)

The intrinsic properties of the nucleus are
described by the Spectral Function— EFT
and nuclear many-body methods




Extended Factorization Scheme

e Two-body currents are included rewriting the hadronic final state as

) =) @ |fa—2)| —>

The hadronic tensor for two-body current processes reads

y >k d3k’
W;b (q,w)oc/dE(QW @22 kk’b T‘pp>
( — B+ 2mpy — €(P) €(P )) - Relativistic two-body
currents
&
Z

et al, Phys.Rev. C99 (2019) no.2, 025502

NR
NR et al, Phys. Rev. Lett. 116, 192501 (2016)

Dedicated code that automatically carries out the calculation of the O A

MEC spin-isospin matrix elements, performing the integration using T -
the Metropolis MC algorithm




Extended Factorization Scheme

 Production of real 1t in the final state

) = [pap) @ |fa-1) —

The hadronic tensor for two-body current processes reads

d3k pw v
Wipir (@, w) / dE -wpbz k)

X6(W—E+mN_6p — €Ex p7T

Pion production elementary amplitudes derived within the extremely sophisticated Dynamic Couple
Chanel approach; includes meson baryon channel and nucleon resonances up to W=2 GeV

« The diagrams considered resonant and non resonant 1 production

T T
& NR, et al, PRC100 (2019) no.4, 045503
+ & H. Kamano et al, PRC 88, 035209 (2013)

& S.X.Nakamura et al, PRD 92, 074024 (2015)




Electron and neutrino -12C cross sections-Sk

& NR, S. Nakamura, T.S.H. Lee, A. Lovato, PRC100 (2019) no.4, 045503
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We included in the
Extended Factorization
Scheme the one- and two-
body current contributions
and the pion production
amplitudes.

Good agreement with
electron scattering data
when all reaction
mechanisms are included

« Ongoing calculation of flux
folded cross sections



Electron and neutrino -12C cross sections-Sk
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- We plan to tackle the DIS further extending the convolution approach:

spectral function+nucleon pdf




A QMC based approach to intranuclear cascade

Figure by T. Golan

The propagation of nucleons through the nuclear
medium is crucial in the analysis of electron-nucleus
scattering and neutrino oscillation experiments.

Charge Exchange ®

Elastic
Scattering

.
Q“
.

Describing nucleons’ propagation in the nuclear
medium would in principle require a fully quantum- .
mechanical description of the hadronic final state. Absorption

Pion Production

Due to its tremendous difficulty we follow a seminal
work of Metropolis and develop a semi-classical
intranuclear cascade (INC) that assume classical
propagation between consecutive scatterings

¢
O of
¢

J.Isaacson, W. Jay, P. Machado, A. Lovato, NR, arXiv:2007.15570
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Sampling nucleon configurations
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The nucleons’ positions utilized in the INC are sampled from 36000 GFMC configurations.
For benchmark purposes we also sampled 36000 mean-field (MF) configurations from the
single-proton distribution.

The differences between GFMC and MF configurations are apparent when comparing the
two-body density distributions: repulsive nature of two-body interactions reduced the
probability of finding two particles close to each other



Probability of interaction

To check if an interaction between nucleons occurs an accept-reject test is
performed on the closest nucleon according to a probability distribution.

We use a cylinder probability distribution, this mimics a more classical
billiard ball like system where each billiard ball has a radius

In addition we consider a gaussian probability distribution

For benchmark purposes, we also implemented the mean free path approach, routinely used in
event generators

P = 0,5d€ where a constant density is assumed ,0(7“1) ~ p(?“1 + dﬁ) ~ p

r < P J the interaction occurred, check Pauli blocking

we sample a number 0 <z <1
r>P X theinteraction DID NOT occur



Results: proton-Carbon cross section

Reproducing proton-nucleus cross section
measurements is an important test of the
accuracy of the INC model.

+ We define a beam of protons with energy E,
uniformly distributed over an area A.

« We propagate each proton in time and check
for scattering at each step.

« The Monte Carlo cross section is defined as:
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The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID
database in which only the elastic contribution is retained. The dashed lines used the NASA

parameterization , which includes inelasticities.



Results: proton-Carbon cross section

The Gauss and cylinder probability
distribution yield similar results

Large difference with the mean-free-path
implementation: conceptual differences
with respect to the previous cases

QMC and MF distribution lead to almost
identical results: this observable does not
depend strongly on correlations among
the nucleons
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The solid lines have been obtained using the
nucleon- nucleon cross sections from the SAID
database in which only the elastic contribution is
retained. The dashed lines used the NASA
parameterization , which includes inelasticities.



Results: nuclear transparency

The nuclear transparency yields the

average probability that a struck nucleon  —— MFGaussEl  --- MF Gauss Tot
leaves the nucleus without interacting Lo ¢ Data — E“FE{Q El o g"nggTot }
. . ' — QMC Gauss E —== QMC Gauss Tot |
with the spectator particles | —— QMC Cyl El --- QMCCyl Tot |
0.9 —— MFP El —-—- MFP Tot -

Nuclear transparency is measured in
(e,e’p) scattering experiments

Transparency

Simulation: we randomly sample a
nucleon with kinetic energy Tp and

propagate it through the nuclear medium 043.......................................-
"0 250 500 750 1000 1250 1500 1750 2000
T, (MeV)
T L Nhits
MC — 1 — N
tot

Gaussian and cylinder curves are consistent and correctly reproduces the data. Correlations do not
seem to play a big role.



Results: correlation effects

I QMC T MF

Histograms of the distance traveled by a struck particle 20/ Total Bvents: 10000 |

before the first interaction takes place for different i QMC itlsi:tsl:0835' ‘
values of the interaction cross section 15F
= 10
When using QMC configurations, the hit nucleon is 53_
surrounded by a short-distance correlation hole: :
expected to propagate freely for ~ 1 fm before interacting Oi
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For 0=0.5 mb the MF distribution peaks toward
smaller distances than the QMC one: originates from 2000
the repulsive nature of the nucleon-nucleon potential ‘

1 QMC T MF

o=50 mb
Total Events: 10000
QMC Hits: 5600 1
MF Hits: 5391

1500

N events

For =50 mb large cylinder, MF and QMC distributions
become similar. The propagating particle is less
sensitive to the local distribution of nucleons and more
sensitive to the integrated density over a larger volume,
reducing the effect of correlations
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Future theory efforts

& S.Gandolfi, D.Lonardoni, et al, Front.Phys. 8 (2020) 117
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Using more approximate methods,
calculation of lepton-Ar cross sections.
Extend the factorization scheme to the DIS

Intranuclear cascade: include it degrees of
freedom: it production, absorption and elastic
scattering as well as in medium corrections

Theoretical uncertainty estimate: truncation

of the chiral expansion and statistical
uncertainty of the ab-initio method

Devise an hybrid QMC approach able to
describe larger nuclei such as 0 and use
machine learning algorithms to obtain cross
sections
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Thank you for your attention!



Extension to Deep Inelastic Scattering

| plan to extend the Factorization scheme to treat the DIS region %

daA:/dEdglﬁP(k,E)

\ﬁ/‘

0 0
don x Wa(w, q2)cos2§ + 2W1 (w, qz)sin2§
2 ;2

p _ _ 9 5 q
Wi = 4m2G (w + Qm)
Gt —q*/(4m*)G3, 72

Wy =

1= 2/ (@m?) dwtg)

Q% — 00, W — 00

WwWo(w,q?) = Fo(z) =Y elxfi(x)
Zl

mWi(w,q?) = Fi(x) = %Fz(x)




Integral Transtorm Techniques

2 Nuclear responses obtained with QMC techniques (more in detail Greens’ Function Monte Carlo)

Rag(w,q) = Y (01JE(@]/)(f15(a)[0)d(w — Ef + Eo)
f

Valuable information can be obtained from the integral transform of the response function

Eaplo,q) = /dWK(UaW)Raﬁ(WaQ) = (vo| T (a) K (o, H — Ep)Js(a)|vo)




Integral Transtorm Techniques

E(o,q) o R(w,q) A Inverting the integral transform is a complicated problem
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Current solution for the quasielastic region: Maximum Entropy Techniques
A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502

~/ We are now exploring new strategies, based on machine learning techniques, to improve the
“ accuracy of the inversion and to better estimate the associated uncertainties



Integral Transtorm Techniques

2 Nuclear responses obtained with QMC techniques (more in detail Greens’ Function Monte Carlo)

Rag(w,q) = Y (01JE(@]/)(f15(a)[0)d(w — Ef + Eo)
f

Valuable information can be obtained from the integral transform of the response function

Eaplo,q) = /dWK(UaW)Raﬁ(WaQ) = (vo| T (a) K (o, H — Ep)Js(a)|vo)




Integral Transtorm Techniques
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Predicting Argon cross sections

« 40Ar(e,e’) and 48Ti(e,e’) cross sections w-w/o FSI - Charge current and neutral current v, scattering
on 12C and Ar for Evy =1 GeV

& C. Barbieri, NR, and V. Soma, arXiv:1907.01122
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- The band comes from a first estimate of the uncertainty on the spectral function calculation
obtained by varying the model-space and the harmonic oscillator frequency



Global Fermi gas: independent particles

Protons and neutrons are considered as

ing freely within the nuclear vol iR N i
moving freely within the nuclear volume potential— -~ ! s
% | ' B

Simple picture of the nucleus: only - | : R
stati§tical cgrrela.tiops are retained Neutron/ 'Protons  Neutrons | 18'
(Pauli exclusion principle) potential , : PR

|

| |

|

The energy of the highest occupied : i EE £
state is the Fermi energy: Ef, B’ : |
constant binding energy l ' Y

x10°%°
c<>" 18 :_ u MiniBooNE data with shape error . .
O 165 . The Global Fermi gas model has been widely used
2 qara-w RIG model (M =103 GeV =100 in comparisons of neutrino scattering data.
i o = RFG model (M =1.35 GeV,k=1.007)
=120
N 3105 RFG model (M =135 GeV,k=1.007) x1.08
gk MiniBooNE data analysis requires Ma~1.35 GeV to
g 8:f| reproduce the data: incompatible with former
6':*' ,,,,,,,, measurements in bubble chamber: Ma~1.03 GeV
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0 02040608 1 1.2 1.4 1.6 1.8 2 A Nuclear effects can explain the axial mass puzzle

Q2. (GeV?)
& MiniBooNE collaboration, PRD 81 (2010) 092005 33



The Spectral Function of finite nuclel

¢ Two different many-body methods to compute the spectral function of finite nuclei

- Correlated Basis Function: the SF obtained within CBF and using the Local Density
Approximation

d3 PNM k E:-p—
Proalk, ) = )+ G O ) —s | [ 7T B = pa)
l & 0. Benhar et al, Nucl. Phys. A505, 267 (1989
Z Zn|¢n(k)|2Fn(E o En)

{P(k,E) [GeV™]

Self Consistent Green’s Function : ab-initio method, the SF obtained
solving the Dyson Equation for the corresponding propagator

G(E) GO (E) X (E)

B — ..------ _|— — -

720
70N
LR

—

Ty

E [GeV]
& V.Soma et al, PRC87 (2013)> no.1, 011303

¢ Results currently available are for electron and neutrino scattering on:

4He, 12C, 160 within the CBF

12, 16Q, Ca,Ti and Ar within the SCGF



The CBF Spectral Function of finite nuclel

« Within the Fermi Gas model we can define the SF as:

PYC(k,E) = 6(FE — eg)0(pr — k|

Fermi gas contribution

Realistic SF: 80% shell model
picture, 20% SRC
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« High energy and momentum correlated pairs
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 VMC: exact calculation of the momentum

distribution including SRC pairs

« CBF: calculation

« 1h corresponds to the MF, rapidly drops

0.6

* FG: unrealistic momentum distribution, totally

missing the high momentum component

SF
FG



Two-body (phenomenological) potential

Realistic local, configuration-space potential are controlled by thousands np and pp scattering
data below 350 MeV of the Nijmegen and Granada databases

Nuclear potentials are strongly spin-isospin dependent. Argonne vig can be written as

18
) — oY 0 I S P, NP
v18(Tig) = vi; + v + v + U = E WP (1) O3
p=1

+ Static part OF 7" = (1,045, 8i5) ® (1, 735)

+ Spin-orbit O ° = Ly; - Sy @ (1,75)

Some of the Feynman diagrams effectively included in the Argonne potential

N N N N, N N




