Abstract

Terrestrial and solar neutrino experiments have a variety of anomalous data that has resisted clarification. Recently, it has appeared that measurements of neutrinos from intense sources on gallium have passed 5 and other hints from MicroBooNE and elsewhere remain interesting. I will present the latest update of these anomalies. I will then explain the primary reasons why these cannot be simply interpreted as a 1 eV sterile neutrino due to constraints from other experimental probes, notably solar neutrinos and cosmological data sets. I will present a novel, simple model that evades many of these constraints by adding in one new particle, which is the dark matter, beyond a sterile neutrino leading to shape-shifting sterile neutrinos.

Overview

- 1. Sterile neutrino picture through 2020
 - ► Cosmology!
- 2. MicroBooNE
- 3. Evading cosmology

- 1. Sterile neutrino picture through 2020
 - ► Cosmology!
- 2. MicroBooNE
- 3. Evading cosmology

Data is confusing Up to you to decide

Neutrinos have mass

Can get usual Dirac mass term via Higgs

- \blacktriangleright \Rightarrow three new right-handed neutrinos
- Steriles can have additional mass terms

► Seesaw?

H. Fritzsch, M. Gell-Mann, P. Minkowski PLB 1975 P. Minkowski PLB 1977
W. Konetschny, W. Kummer PLB 1977 D. Wyler, L. Wolfenstein NPB 1983
R. Foot, H. Lew, X. He, G. Joshi ZPC 1989

▶ Pseudo-Dirac?

L. Wolfenstein NPB 1981 S. Bilenky, S. Petcov RMP 1987

- Some options have no sterile neutrinos, but other new particles
 E.g. type-II seesaw
- Interesting mass ranges are often 10^{13} GeV, 10^3 GeV, or 10^{-26} GeV, not 10^{-9} GeV

Three flavor oscillation picture

Peter B. Denton (BNL)

2212.00809

WIN: July 7, 2023 5/34

Three flavor oscillation picture: looks good

Let's check many Δm^2 's!

Accelerator: LSND

- ▶ LSND ran from 1993-1998
- ► $E_{\bar{\nu}_{\mu}} \in [20, 53]$ MeV
- \blacktriangleright L = 30 m
- ▶ Looked for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance
- Excess of: $87.9 \pm 22.4 \pm 6.0 \Rightarrow 3.8\sigma (1 \text{ dof})$
- ▶ Interesting region:

$$\Delta m_{41}^2 \sim 1 \text{ eV}^2$$

$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 \sim 0.002$$

$$\text{OPERA, ICARUS disfavor } \sin^2 2\theta_{\mu e} \gtrsim 0.02$$

Accelerator: MiniBooNE

- ▶ MiniBooNE ran from 2002 to 2019
- ▶ Built to test LSND, higher energy, longer baseline, similar L/E, both $\nu, \bar{\nu}$
- $\blacktriangleright E_{\nu_{\mu}} \sim 500 \text{ MeV}$
- ▶ L = 541 m
- ► Excesses:
 - $\nu_e: 381.2 \pm 85.2 \Rightarrow 4.5\sigma \ (1 \text{ dof})$
 - $\bar{\nu}_e: 79.3 \pm 28.6 \Rightarrow 2.8\sigma \ (1 \text{ dof})$
 - Combined: 4.7σ (1 dof)
 - Excesses consistent with LSND under sterile hypothesis
 - Combined with LSND: $\Rightarrow 6.0\sigma (1 \text{ dof})$

MiniBooNE 1805.12028

Accelerator experiment caveats

▶ Neither LSND nor MiniBooNE is particularly well fit by a sterile

- ▶ The excess grows at lower energies faster than it should
- ▶ Not necessarily a huge problem
- ▶ LSND result may not be robust under cut assumptions

J. Hill hep-ex/9504009

▶ Not a problem for MiniBooNE

MiniBooNE 2006.16883

ν_e appearance requires both ν_μ disappearance and ν_e disappearance
 Since |U_{μ4}|²|U_{e4}|² > 0 and |U_{αi}| ∈ [0, 1], ∃ lower limits on both |U_{μ4}| and |U_{e4}|

Peter B. Denton (BNL)

WIN: July 7, 2023 9/34

 \blacktriangleright Low energy solar neutrino experiments measure the *pp* flux

 $\begin{array}{c} {\rm GALLEX:\ 1991-1997,\ GNO:\ 1998-2003\ 1001.2731}\\ {\rm SAGE:\ 1989-2007\ 0901.2200} \end{array}$

Consistent with KamLAND

 \blacktriangleright Low energy solar neutrino experiments measure the *pp* flux

GALLEX: 1991-1997, GNO: 1998-2003 1001.2731 SAGE: 1989-2007 0901.2200

Consistent with KamLAND

▶ Callibrate detectors with intense radioactive sources

▶ See fewer neutrinos than expected:

3.0 σ : C. Giunti, M. Laveder 1006.3244 2.3 σ : J. Kostensalo, et al. 1906.10980 > 4 σ : BEST 2109.11482 →> 5 σ : C. Giunti, et al. 2212.09722

 \blacktriangleright Low energy solar neutrino experiments measure the *pp* flux

GALLEX: 1991-1997, GNO: 1998-2003 1001.2731 SAGE: 1989-2007 0901.2200

Consistent with KamLAND

Callibrate detectors with intense radioactive sources

▶ See fewer neutrinos than expected:

3.0 σ : C. Giunti, M. Laveder 1006.3244 2.3 σ : J. Kostensalo, et al. 1906.10980 > 4 σ : BEST 2109.11482 →> 5 σ : C. Giunti, et al. 2212.09722

•
$$\Delta m_{41}^2 \gtrsim 0.5 \text{ eV}^2$$

• $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2) \sim 0.4$

Peter B. Denton (BNL)

WIN: July 7, 2023 10/34

 \blacktriangleright Low energy solar neutrino experiments measure the *pp* flux

GALLEX: 1991-1997, GNO: 1998-2003 1001.2731 SAGE: 1989-2007 0901.2200

Consistent with KamLAND

Callibrate detectors with intense radioactive sources

▶ See fewer neutrinos than expected:

3.0 σ : C. Giunti, M. Laveder 1006.3244 2.3 σ : J. Kostensalo, et al. 1906.10980 > 4 σ : BEST 2109.11482 →> 5 σ : C. Giunti, et al. 2212.09722

•
$$\Delta m_{41}^2 \gtrsim 0.5 \text{ eV}^2$$

• $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2) \sim 0.4$

▶ Attempts to explain with standard physics: unsuccessful

C. Giunti, et al. 2212.09722 V. Brdar, J. Gehrlein, J. Kopp 2303.05528 S. Elliott, V. Gavrin, W. Haxton 2303.13623

Peter B. Denton (BNL)

WIN: July 7, 2023 10/34

Reactor rates

Deficit relative to prediction

T. Mueller, et al. 1101.2663

G. Mention, et al. 1101.2755

Peter B. Denton (BNL)

WIN: July 7, 2023 11/34

Reactor rates

Deficit relative to prediction

Daya Bay, PROSPECT 2106.12251

P. Huber 1106.0687

WIN: July 7, 2023 11/34

Reactor rates

Deficit relative to prediction

Peter B. Denton (BNL)

WIN: July 7, 2023 11/34

Short baseline spectral

▶ NEOS, DANSS see some spectral anomalies

• $\Delta m_{41}^2 = 1.26 \text{ eV}^2$ and $\sin^2 2\theta_{14} = 0.044 \text{ at } 3.3\sigma$

▶ Mixings larger than $\sin^2 2\theta_{14} \sim 0.01$ disfavored by spectral data

- ▶ Neutrino-4 also sees spectral anomalies
 - $\Delta m_{41}^2 = 7.32 \text{ eV}^2 \text{ and } \sin^2 2\theta_{14} = 0.31$
 - ▶ In tension with other reactor data
 - Analysis issues

J. Berryman, P. Huber 2005.01756

Solar

- 1. Use gallium and Borexino for $pp\ \mathrm{data}$
- 2. Use SNO and SK for $^8\mathrm{B}$ data

No Borexino data?

- 3. Use KamLAND data to set Δm_{21}^2
- 4. Fix θ_{13} to best fit
- 5. Vary θ_{12} and θ_{14}
- 6. Consider impact on U_{e4} (θ_{14}) only
- 7. Applies for $\Delta m^2_{41} \gtrsim 10^{-3} \ {\rm eV}^2$
- 8. Is effectively a unitary violation analysis
- 9. Checked Wilks' theorem with MC

K. Goldhagen, et al. 2109.14898

Have anomalous $\nu_{\mu} \rightarrow \nu_{e}$

LSND, MiniBooNE

Might have anomalous $\nu_e \rightarrow \nu_e$

Yes: Gallium, Reactor rate

No: Reactor spectral, solar

Do we have anomalous $\nu_{\mu} \rightarrow \nu_{\mu}$?

Peter B. Denton (BNL)

WIN: July 7, 2023 14/34

MINOS/MINOS+

- ▶ MINOS ran from 2005-2012, MINOS+ (higher energy) ran from 2013-2016
- ▶ Leverage near- and far-detectors simultaneously

MINOS 1710.06488

Some concerns, e.g. W. Louis 1803.11488

IceCube

At $E \sim 1$ TeV and $\Delta m_{41}^2 \sim 1$ eV²,

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ experiences large disappearance through the Earth's core

H. Nunokawa, O. Peres, R. Funchal hep-ph/0302039

IceCube

H. Nunokawa, O. Peres, R. Funchal hep-ph/0302039

PBD, Y. Farzan, I. Shoemaker 1811.01310

Cosmological bounds

- Includes CMB temperature, polarization, and lensing, and BAO
- ▶ No local H_0 constraint
- ▶ Bounds independent of flavor
- To be consistent with data must have small mixing and small mass

Cosmological bounds

- Includes CMB temperature, polarization, and lensing, and BAO
- ▶ No local H_0 constraint
- ▶ Bounds independent of flavor
- To be consistent with data must have small mixing and small mass
- ▶ Much more than just N_{eff} and $\sum m_{\nu}$
- Just adding a new interaction is not straightforward

N. Song, M. Gonzalez-Garcia, J. Salvado 1805.08218

Cosmological bounds with an interaction

- Include H_0 and σ_8 tensions
- ▶ Data prefers: $N_{\text{eff}} = 4.02 \pm 0.29$ and $G_X \sim 10^8 G_F$

C. Kreisch, F. Cyr-Racine, O. Doré 1902.00534

G. Barenboim, PBD, I. Oldengott 1903.02036

- ▶ Large self-interaction is constrained by:
 - ▶ $Z \rightarrow$ invisible for large couplings
 - ▶ BBN+CMB for light masses
 - ▶ Kaon decays for all remaining parameter space for ν_e , ν_μ
- ▶ Viable space persists $m_X \sim 10$ MeV if the self interaction is in the ν_τ sector

N. Blinov, et al. 1905.02727

▶ Testable by IceCube looking for dips due to $C\nu B$

G. Barenboim, PBD, I. Oldengott 1903.02036

C. Creque-Sarbinowski, J. Hyde, M. Kamionkowski 2005.05332

I. Esteban, et al. 2107.13568

Cosmological bounds with an interaction

- Include H_0 and σ_8 tensions
- ▶ Data prefers: $N_{\rm eff} = 4.02 \pm 0.29$ and $G_X \sim 10^8 G_F$

C. Kreisch, F. Cyr-Racine, O. Doré 1902.00534

G. Barenboim, PBD, I. Oldengott 1903.02036

- ▶ Large self-interaction is constrained by:
 - ▶ $Z \rightarrow$ invisible for large couplings
 - ▶ BBN+CMB for light masses
 - ▶ Kaon decays for all remaining parameter space for ν_e , ν_μ
- ▶ Viable space persists $m_X \sim 10$ MeV if the self interaction is in the ν_τ sector

N. Blinov, et al. 1905.02727

▶ Testable by IceCube looking for dips due to $C\nu B$

G. Barenboim, PBD, I. Oldengott 1903.02036

C. Creque-Sarbinowski, J. Hyde, M. Kamionkowski 2005.05332

I. Esteban, et al. 2107.13568

Not a great fit to the cosmological data

Other new physics (cosmo) scenarios fit the data better

Peter B. Denton (BNL)

1903.02036

WIN: July 7, 2023 18/34

Let's resolve this terrestrially

MicroBooNE results

► Three analysis teams:

- 1. Wire-Cell
- 2. Deep Learning
- 3. Pandora
 - ▶ With 0 protons
 - \blacktriangleright With 1+ protons
- Underfluctuation compared to no-oscillations
- Disfavors MiniBooNE's best fit LEE hypothesis at 3.75σ

 $\operatorname{MicroBooNE}\ \texttt{2110.14054}$

MicroBooNE is focused on ν_e appearance Can do ν_{μ} and ν_e disappearance too!

See also D. Cianci, et al. 1702.01758

MiniBooNE backgrounds too big, plus anomaly

Dip hunting

- ▶ 4 analysis channels
 - ▶ Wire cell has most statistics
 - Analyses not fully independent
- ▶ Dip appears in multiple analyses

Global ν_e disappearance picture

Cosmology disfavors entire plane!

2111.05793

What does it take to evade cosmology?

2301.09651 with Hooman Davoudiasl

See also: Y. Farzan 1907.04271 V. Brdar, J. Gehrlein, J. Kopp 2303.05528

Peter B. Denton (BNL)

2301.09651 & 2301.11106

WIN: July 7, 2023 24/34

- ▶ Sterile neutrinos seem to act differently in different places:
 - ► Earth's surface
 - Sun
 - ► Early universe
- \blacktriangleright Suppose sterile neutrino talk to nucleons via long-range scalar ϕ
- ► Suppose $m_{\phi} \sim 5 \times 10^{-15} \text{ eV} \Rightarrow 1/m_{\phi} \sim 40,000 \text{ km} \sim 6R_{\oplus}$

A broad range of values works

- ▶ Sterile neutrinos seem to act differently in different places:
 - ► Earth's surface
 - Sun
 - ► Early universe
- \blacktriangleright Suppose sterile neutrino talk to nucleons via long-range scalar ϕ
- ▶ Suppose $m_{\phi} \sim 5 \times 10^{-15} \text{ eV} \Rightarrow 1/m_{\phi} \sim 40,000 \text{ km} \sim 6R_{\oplus}$

A broad range of values works

 $\blacktriangleright~\phi$ - nucleon coupling below fifth force limits: $g_n\sim 5\times 10^{-25}$

MICROSCOPE 2209.15487

▶ At Earth's surface, field has non-zero value:

$$\phi^{\oplus}\approx-\frac{g_nN_n^{\oplus}}{4\pi R_{\oplus}}e^{-m_{\phi}R_{\oplus}}=-4\times10^{12}~{\rm eV}$$

- ▶ Sterile neutrinos seem to act differently in different places:
 - ► Earth's surface
 - Sun
 - ► Early universe
- \blacktriangleright Suppose sterile neutrino talk to nucleons via long-range scalar ϕ
- ▶ Suppose $m_{\phi} \sim 5 \times 10^{-15} \text{ eV} \Rightarrow 1/m_{\phi} \sim 40,000 \text{ km} \sim 6R_{\oplus}$

A broad range of values works

• ϕ - nucleon coupling below fifth force limits: $g_n \sim 5 \times 10^{-25}$

MICROSCOPE 2209.15487

▶ At Earth's surface, field has non-zero value:

$$\phi^{\oplus}\approx-\frac{g_nN_n^{\oplus}}{4\pi R_{\oplus}}e^{-m_{\phi}R_{\oplus}}=-4\times10^{12}~{\rm eV}$$

 Take m₀ = 1 eV and g_s ~ 5 × 10⁻¹⁴ ⇒ |g_sφ[⊕]| = 0.2 eV
 Also need a bare mass term for the new mass state: m_s(x) = m₀ + g_sφ(x) m₀ ≠ 0 needed for cosmological ∑m_ν

Peter B. Denton (BNL)

WIN: July 7, 2023 25/34

Dirac mass matrix:

$$M_{\nu} = \begin{pmatrix} m_{\nu} & m_D \\ 0 & m_s(\vec{x}) \end{pmatrix}_{\nu_s}^{\nu_{e,\mu,\tau}}$$

Dirac mass matrix:

$$M_{\nu} = \begin{pmatrix} m_{\nu} & m_{D} \\ 0 & m_{s}(\vec{x}) \end{pmatrix}_{\nu_{s}}^{\nu_{e,\mu,\tau}} \qquad \qquad m_{1} \simeq m_{\nu} \frac{m_{s}(\vec{x})}{\sqrt{m_{s}^{2}(\vec{x}) + m_{D}^{2}}} \\ \tan 2\theta_{14} \simeq \frac{2m_{D}m_{s}(\vec{x})}{m_{s}^{2}(\vec{x}) - m_{D}^{2} - m_{\nu}^{2}} \qquad \qquad m_{4} \simeq \sqrt{m_{s}^{2}(\vec{x}) + m_{D}^{2}}$$

Set $m_{\nu} = 0.03$ eV and $m_D = 0.3$ eV

Peter B. Denton (BNL)

2301.09651 & 2301.11106

WIN: July 7, 2023 26/34

Self interacting scalar

Start with a potential:

$$V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2$$

But loops will add in a term:

$$V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 + \frac{\lambda}{4!}\phi^4$$
$$\delta\lambda \sim \frac{g_s^4}{16\pi^2} \sim 4 \times 10^{-56}$$

Shape-shifting sterile neutrinos in the early universe

To avoid cosmological constraints, need:

- 1. $m_s \gtrsim \text{keV} \ (\theta_{14} \lesssim 10^{-3})$
- 2. Thus $\phi_{\rm BBN} \gtrsim 10^{16} \ {\rm eV}$
- 3. At minimal reheating temp $T_{\rm rh} \sim 10$ MeV, need $\phi_i \gtrsim \text{few} \times 10^{16} \text{ eV}$
- 4. Various ways to do this, e.g. thermal misalignment

D. Marsh 1510.07633

- 5. At $\lambda \sim 4 \times 10^{-56} \; \phi$ is initially quartic dominated
- 6. Transitions to $m_{\phi}^2 \phi^2$ dominated at ~keV with $m_{\phi}^2 \phi^2 \sim 0.2 \text{ eV}^2$
- 7. Thus ϕ contributes $\sim 10^{-9}$ of DM

Peter B. Denton (BNL)

2301.09651 & 2301.11106

Ultralight dark matter

1. ϕ needs to transition to matter-like by $T\sim \rm keV$

S. Das, E. Nadler 2010.01137

2. Need $\phi \sim 10^{19}$ eV at $T \sim \text{keV}$ to get the relic abundance

 10^5 higher than before

3. Assuming quartic dominates before keV, need $\phi_i \sim 10^{23}$ eV at $T_{\rm rh} \sim 10$ MeV 4. So $\lambda \sim 3 \times 10^{-66}$ (or smaller)

Fine tuning

Ultralight dark matter

1. ϕ needs to transition to matter-like by $T\sim \rm keV$

S. Das, E. Nadler 2010.01137

2. Need $\phi \sim 10^{19}$ eV at $T \sim \text{keV}$ to get the relic abundance

 10^5 higher than before

3. Assuming quartic dominates before keV, need $\phi_i \sim 10^{23}$ eV at $T_{\rm rh} \sim 10$ MeV 4. So $\lambda \sim 3 \times 10^{-66}$ (or smaller)

Fine tuning

Can have a shape-shifting sterile neutrino that evades cosmology by adding one particle: dark matter

Shape-shifting sterile neutrinos in vacuum

Back to low energy pheno:

- Vacuum of space: $m_4 \sim 1 \text{ eV}, \theta_{14} \sim 0.3$
- ► Active neutrinos as expected
- $\sum m_{\nu} \lesssim 0.1 \text{ eV}$ comes mostly from $z \in [10, 100]$

C. Lorenz, et al. 2102.13618

Shape-shifting sterile neutrinos at the Earth

- 1. Earth's surface: things are nearly the same as vacuum
- 2. Center of sun: $m_4 \sim 10^3 \text{ eV}, \ \theta_{14} \sim 3 \times 10^{-4}$

Other phenomena of shape-shifting sterile neutrinos

- $\blacktriangleright \nu_s$'s will be resonantly produced in the early universe in small bursts as ϕ oscillates past 0
 - ▶ Effect is small
- ▶ The sterile neutrino is too heavy to affect supernova dynamics
- ▶ The Sun's potential could lead to an annual (and daily) modulation in sterile signals
 - Depends on m_{ϕ} which is flexible
 - ▶ No such search has been performed
- Could lead to a modification of atmospheric constraints on steriles
- ▶ Doesn't address surface constraints e.g. reactor spectral, KARMEN, etc.

1 eV sterile summary

- ▶ Hints for $\sim 1 \text{ eV}$ steriles persist
 - ▶ RAA is essentially gone
 - Gallium is back
- ▶ Constraints for $\sim 1 \text{ eV}$ steriles persist
- ▶ Cosmological constraints are strong and robust
 - ▶ Maybe Hubble parameter tension?
 - ▶ Testable with IceCube upgrade
- ▶ MicroBooNE does not see appearance
- ▶ MicroBooNE might be seeing disappearance
 - ▶ Consistent with gallium
 - ▶ Inconsistent with other constraints
- ▶ Possible to evade cosmology with: 1 sterile neutrino and ultra-light DM

Thanks!

Peter B. Denton (BNL)

2301.09651 & 2301.11106

WIN: July 7, 2023 34/34

Backups

Peter B. Denton (BNL)

2301.09651 & 2301.11106

WIN: July 7, 2023 35/34

Any new light neutrinos must be sterile: SM gauge singlets

Fun fact: pre-LEP upper limit on $N_{\nu} \sim 6000!$

Peter B. Denton (BNL)

2301.09651 & 2301.11106

WIN: July 7, 2023 36/34

Short baseline program

1. Leverage LAr to discriminate photons from electrons

 $\operatorname{MicroBooNE}\ 1910.02166$

2. L is easier to measure than E

P. Machado, O. Palamara, D. Schmitz 1903.04608

- 3. Beam is mostly ν_{μ} , but some ν_e too
- 4. Test bed for LAr technology

Analysis procedure

- 1. Take systematics as fully uncorrelated bin to bin
- 2. Unfold predicted spectrum to spectrum in true energy
 - ▶ Use a derivative regulator
- 3. Apply oscillation probability
- 4. Reapply energy smearing
- 5. Compare to data with LLR-Poisson with pull terms
- 6. Apply Feldman-Cousins
 - ► Fluctuate systematics
 - ▶ Literature suggests this is conservative
 - Verified that it is conservative in this case
- 7. Get contours via Wilks'
 - ▶ FC contours are very similar

Results and Monte Carlo significance

Other MicroBooNE analysis channels

Analysis	$\sin^2(2\theta_{14})$	$\Delta m^2_{41} \ (\mathrm{eV^2})$	$N\sigma$ (FC)
Wire-Cell	$0.35\substack{+0.19 \\ -0.16}$	$1.25_{-0.39}^{+0.74}$	2.4
Deep-Learning	$0.88\substack{+0.12\\-0.41}$	$3.91\substack{+0.40 \\ -0.40}$	1.8
Pandora-Np	$0.81\substack{+0.19 \\ -0.47}$	$[1.28,2.44] \\ 6.73^{+1.75}_{-0.90} \\ \vdots$	2.4
Pandora-0p	$1_{-0.29}$	$2.21_{-0.60}^{+0.82}$	1.8

MicroBooNE data in other analyses

MicroBooNE contours in other analyses

MicroBooNE contours in other analyses

MicroBooNE analyses overlap

Events in multiple analyses:

Analysis	W-C	D-L	Pan-Np	Pan-0p
Wire-Cell	606	15	45	7
Deep-Learning	15	25	9	0
Pandora-Np	45	9	64	0
Pandora-0p	7	0	0	35

Unitarity constraints

Unitary violation: the study of how $U_{3\times 3}$ is not unitary independent of m_4, m_5, \ldots Constraints vary considerably among "global" analyses:

$$1 - |U_{e1}|^2 - |U_{e2}|^2 - |U_{3e}|^2 < \begin{cases} 0.05\\ 0.001 \end{cases} \text{ at } 2\sigma$$

S. Parke, M. Ross-Lonergan 1508.05095

Z. Hu, et al. 2008.09730

Unitarity constraints

Unitary violation: the study of how $U_{3\times 3}$ is not unitary independent of m_4, m_5, \ldots Constraints vary considerably among "global" analyses:

$$1 - |U_{e1}|^2 - |U_{e2}|^2 - |U_{3e}|^2 < \begin{cases} 0.05\\ 0.001 \end{cases} \text{ at } 2\sigma$$

All analyses *assume* unitarity Throw out LSND, MiniBooNE, RAA, gallium, etc.

S. Parke, M. Ross-Lonergan 1508.05095

Z. Hu, et al. 2008.09730

To the future

Other analyses

- ▶ Evidence for appearance is still there with MiniBooNE, but lower significance
- ▶ Don't see > 2σ evidence for disappearance but very similar best fit

C. Argüelles, et al. 2111.10359

• Evidence for appearance is still there, but lower significance

MiniBooNE 2201.01724

- ▶ Analysis depends on whether focused on disappearance or both
- ▶ Others handle fully-/partially-contained better
- ▶ Also doesn't see high evidence for disappearance

MicroBooNE 2210.10216

None discuss cosmological constraints

3+1+NSI

A new interaction can mitigate IceCube constraints

 $\epsilon_{\mu\mu}, \epsilon_{\tau\tau}$: J. Liao, D. Marfatia 1602.08766

Can it also help with MINOS?

3+1+NSI

A new interaction can mitigate IceCube constraints

 $\epsilon_{\mu\mu},\,\epsilon_{\tau\tau}$: J. Liao, D. Marfatia 1602.08766

Can it also help with MINOS?

- ▶ Built UV complete model with ϵ_{ss}
- IceCube: 3+1+NSI is preferred over SM
- ▶ MINOS: No preference for 3+1 even with NSI

PBD, Y. Farzan, I. Shoemaker 1811.01310

Peter B. Denton (BNL)

WIN: July 7, 2023 48/34

Self interacting long range forces sourced by celestial objects

- 1. A general long range force will have a self interaction
- 2. Need to solve:

$$-2\frac{\phi'}{r} - \phi'' + m^2\phi + \frac{1}{3!}\lambda\phi^3 + n(r) = 0$$

3. Analytic solutions don't exist, and is a boundary problem

 $\phi'(0)=0, \ \phi(\infty)=0$

- 4. Need to employ shooting method to infer $\phi(0)$
- 5. Depending on shape of n(r) and value of λ , can hit double precision limit

Peter B. Denton (BNL)

WIN: July 7, 2023 49/34