Here Comes the Sun: Solar Parameters in Long-Baseline Neutrino Oscillations

Peter B. Denton

HET Lunch Discussion

July 28, 2023

2302.08513 with Julia Gehrlein

Speaking from Setauket land

HET Lunch Discussion: July 28, 2023 2/18

Peter B. Denton (BNL)

NF01 Report 2212.00809

Global fit comparison

Esteban+ 2007.14792 de Salas+ 2006.11237 Capozzi+ 2107.00532

Global fit comparison

Esteban+ 2007.14792 de Salas+ 2006.11237 Capozzi+ 2107.00532

Global fit uncertainty $\Rightarrow \sim 1\sigma$ extra uncertainty

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 3/18

Solar parameter status

Data	$\Delta m^2_{21} \ [10^{-5} \ {\rm eV^2}]$	$\sin^2 \theta_{12}$	Ref.
SK+SNO	+6.10	0.305	SK Neutrino 2022
KamLAND	+7.54	0.316	1303.4667
	1.04	0.010	SK Neutrino 2022
SK+SNO+KamLAND	7.49	0.305	SK Neutrino 2022
Global fit	7.42	0.304	Esteban+ 2007.14792
	7.5	0.318	de Salas $+ 2006.11237$
	7.36	0.303	Capozzi+ 2107.00532

Solar parameter status

Data	$\Delta m^2_{21} \ [10^{-5} \ {\rm eV^2}]$	$\sin^2 \theta_{12}$	Ref.
SK+SNO	+6.10	0.305	SK Neutrino 2022
KamLAND	± 7.54	0.316	1303.4667 SK Neutrino 2022
SK+SNO+KamLAND	7.49	0.305	SK Neutrino 2022
Global fit	7.42	0.304	Esteban+ 2007.14792
	7.5	0.318	de Salas+ 2006.11237
	7.36	0.303	Capozzi+ 2107.00532

	$\delta x/x$				
Generation	Data	Δm^2_{21}	$\sin^2 \theta_{12}$	Ref.	
Current	SK+SNO	15%	4.6%	SK Neutrino 2022	
	KamLAND	2.5%	9.5%	1303.4667	
				SK Neutrino 2022	
	SK+SNO+KamLAND	$\mathbf{2.4\%}$	4.3%	SK Neutrino 2022	
		2.8%	4.3%	Esteban+ 2007.14792	
	Global fit	2.9%	5.0%	de Salas+ 2006.11237	
		2.2%	4.3%	Capozzi+ 2107.00532	
Future	DUNE-solar	5.9%	3.0%	Capozzi+ 1808.08232	
	JUNO	0.3%	0.5%	JUNO 2204.13249	

Peter B. Denton (BNL)

2302.08513

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$
- 2. $m_1 < m_2 < m_3$
- 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$

4. ÷

PBD 2003.04319 PBD, R. Pestes 2006.09384 PBD, S. Parke 2106.12436 HET Lunch Discussion: July 28, 2023

5/18

Peter B. Denton (BNL)

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$ 2. $m_1 < m_2 < m_3$ 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$ 4. \vdots
- \blacktriangleright #3 was commonly used in solar neutrinos
- ▶ We know that in the solar sector all three are equivalent
- \blacktriangleright We take #1 as our definition

PBD 2003.04319 PBD, R. Pestes 2006.09384 PBD, S. Parke 2106.12436 HET Lunch Discussion: July 28, 2023

5/18

Peter B. Denton (BNL)

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$ 2. $m_1 < m_2 < m_3$ 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$ 4. :
- \blacktriangleright #3 was commonly used in solar neutrinos
- ▶ We know that in the solar sector all three are equivalent
- \blacktriangleright We take #1 as our definition

Thus $\theta_{12} \in [0, 45^{\circ}]$ by definition Only solar data tells us that $\Delta m_{21}^2 > 0$

> PBD 2003.04319 PBD, R. Pestes 2006.09384 PBD, S. Parke 2106.12436

Peter B. Denton (BNL)

2003.04319

HET Lunch Discussion: July 28, 2023 5/18

Four ways of determining sign of Δm_{31}^2

- 1. Matter effect in appearance (DUNE)
- 2. Comparison of ν_{μ} disappearance (IceCube, KM3NeT, DUNE, HK) and ν_e disappearance (Daya Bay, JUNO)

H. Nunokawa, R. Funchal, S. Parke hep-ph/0503283

- 3. Measure all three Δm_{ij}^2 at once (JUNO)
- 4. $\sum m_{\nu_i}, m_{\beta\beta}$: Cosmology/ $0\nu\beta\beta$

Mostly only works to rule out the IO

JUNO's mass ordering measurement

Peter B. Denton (BNL)

HET Lunch Discussion: July 28, 2023 7/18

JUNO's mass ordering sensitivity

Peter B. Denton (BNL)

HET Lunch Discussion: July 28, 2023 8/18

JUNO's mass ordering sensitivity dependence

Peter B. Denton (BNL)

HET Lunch Discussion: July 28, 2023 9/18

δ and CP violation

$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

 $\frac{\bar{\theta}}{2\pi} < 10^{-11}$ J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\text{CKM}}|}{J_{\text{max}}} = 3 \times 10^{-4}$$

$$\frac{|J_{\text{PMNS}}|}{J_{\text{max}}} < 0.34$$

$$\frac{|\text{PBD}, \text{ J. Gehrlein, R. Pestes 2008.01110}}{}$$

$$J_{\rm max} = \frac{1}{6\sqrt{3}} \approx 0.096$$

HET Lunch Discussion: July 28, 2023 10/18

3. Lepton mass matrix: ?

Peter B. Denton (BNL)

CP violation in neutrinos

$$P_{\mu e} - \bar{P}_{\mu e} \simeq 8\pi s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad \text{(in vacuum)}$$

▶ Need appearance to measure it

One could do ultra-long-baseline ν_µ disappearance
 Appearance has only been clearly seen in long-baseline accelerator neutrinos at NOvA and T2K

T2K 1502.01550

NOvA 1601.05022

But see also solar, astrophysical, and atmospheric

▶ Appearance probabilities depend on all six parameters

CP violation in neutrinos

$$P_{\mu e} - \bar{P}_{\mu e} \simeq 8\pi s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad \text{(in vacuum)}$$

▶ Need appearance to measure it

One could do ultra-long-baseline ν_µ disappearance
 Appearance has only been clearly seen in long-baseline accelerator neutrinos at NOvA and T2K

T2K 1502.01550

NOvA 1601.05022

But see also solar, astrophysical, and atmospheric

Appearance probabilities depend on all six parameters

Can't determine CP violation and δ without knowing all five other parameters!

True in two ways

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 11/18

Which parameters are important?

DUNE-LBL and HK-LBL will have world-leading measurements of:

1. $|\Delta m_{31}^2|$ (see also JUNO, HK-Atm, & IceCube)

The sign of Δm^2_{31} will be determined in multiple ways

- 2. θ_{23} (see also HK-Atm & IceCube)
- 3. δ
- 4. θ_{13} (Daya Bay & RENO)

External information on those parameters won't help much

Which parameters are important?

DUNE-LBL and HK-LBL will have world-leading measurements of:

1. $|\Delta m_{31}^2|$ (see also JUNO, HK-Atm, & IceCube)

The sign of Δm^2_{31} will be determined in multiple ways

- 2. θ_{23} (see also HK-Atm & IceCube)
- 3. δ
- 4. θ_{13} (Daya Bay & RENO)

External information on those parameters won't help much

What about Δm_{21}^2 and θ_{12} ?

Impact of current priors

How much does removing one prior change the McDonald's plot?

Peter B. Denton (BNL)

2302.08513

Precision on δ

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 14/18

So external information on solar parameters is crucial

So external information on solar parameters is crucial

Some sensitivity to CP violation with no solar information?

Peter B. Denton (BNL)

LBL can measure solar parameters!

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 16/18

True values matter

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 17/18

True values matter

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 17/18

Long-baseline solar parameter summary

- ▶ To reach δ goals, DUNE & HK *need* external input on Δm_{21}^2 and θ_{12}
- ▶ DUNE & HK can provide a very orthogonal cross check of solar parameters
- ▶ Pay attention to the exact value of Δm_{21}^2 that JUNO measures

Long-baseline solar parameter summary

- ▶ To reach δ goals, DUNE & HK *need* external input on Δm_{21}^2 and θ_{12}
- ▶ DUNE & HK can provide a very orthogonal cross check of solar parameters
- ▶ Pay attention to the exact value of Δm_{21}^2 that JUNO measures

Thanks!

Backups

Peter B. Denton (BNL)

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

δ : what is it really?

Peter B. Denton (BNL)

2302.08513

HET Lunch Discussion: July 28, 2023 21/18