Lepton-nucleus scattering: from the quasi-elastic to the DIS region

Noemi Rocco

Brookhaven Neutrino Theory Virtual Seminars
Argonne National Laboratory
August 19, 2020

* Fermilab

In Collaboration with: O. Benhar, J. Carlson, S. Gandolfi, J. Isaacson, W. Jay, T.S.H. Lee, A. Lovato, P. Machado, S.X. Nakamura, T. Sato, R. Schiavilla

Addressing Neutrino-Oscillation Physics

$P_{\nu_{\mu} \rightarrow \nu_{e}}(E, L) \sim \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \rightarrow \Phi_{e}(E, L) / \Phi_{\mu}(E, 0)$

Detectors measure the neutrino interaction rate:

A quantitative knowledge of $\sigma(E)$ and $f_{o}(E)$ is crucial to precisely extract v oscillation parameters

To study neutrinos we need nuclei

? Where does Nuclear Physics come into play

Utilize heavy target in neutrino detectors to maximize interactions \rightarrow understand nuclear structure

DUNE

Outline of the talk

1st Part of the Presentation

- Ab-initio calculations (GFMC) -able to describe how nuclei emerge starting from neutron and proton interactionsprovide an accurate predictions of the QE region including oneand two-body currents

Quasielastic scattering on a nucleus:

Outline of the talk

2nd Part of the Presentation

- More approximate approach: Extended Factorization scheme + Semi-phenomenological SF have been introduced to tackle QE, dip and π-production regions.

Outline of the talk

3nd Part of the Presentation

Synergistic effort among these three components:
what we are doing / plan to do for the event-generator component

Theory of lepton-nucleus scattering

The cross section of the process in which a lepton scatters off a nucleus is given by

$$
d \sigma \propto L^{\alpha \beta} R_{\alpha \beta}
$$

Nuclear response to the electroweak probe:

$$
R_{\alpha \beta}(\omega, \mathbf{q})=\sum_{f}\langle 0| J_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| J_{\beta}(\mathbf{q})|0\rangle \delta\left(\omega-E_{f}+E_{0}\right)
$$

The initial and final wave functions describe many-body states:

$$
|0\rangle=\left|\Psi_{0}^{A}\right\rangle,|f\rangle=\left|\Psi_{f}^{A}\right\rangle,\left|\psi_{p}^{N}, \Psi_{f}^{A-1}\right\rangle,\left|\psi_{k}^{\pi}, \psi_{p}^{N}, \Psi_{f}^{A-1}\right\rangle \ldots
$$

One and two-body current operators

The basic model of nuclear theory

At low energy, the effective degrees of freedom are pions and nucleons:

The electromagnetic current is constrained by the Hamiltonian through the continuity equation

$$
\nabla \cdot \mathbf{J}_{\mathrm{EM}}+i\left[H, J_{\mathrm{EM}}^{0}\right]=0 \quad\left[v_{i j}, j_{i}^{0}\right] \neq 0
$$

The above equation implies that the current operator includes one and two-body contributions

$$
J^{\mu}(q)=\sum_{i} j_{i}^{\mu}+\sum_{i<j} j_{i j}^{\mu}+\ldots
$$

Quantum Monte Carlo approach

We want to solve the Schrödinger equation

$$
H \Psi\left(\mathbf{R} ; s_{1} \ldots s_{A}, \tau_{1} \ldots \tau_{A}\right)=E \Psi\left(\mathbf{R} ; s_{1} \ldots s_{A}, \tau_{1} \ldots \tau_{A}\right)
$$

Any trial wave function can be expanded in the complete set of eigenstates of the the Hamiltonian according to

$$
\left|\Psi_{T}\right\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle \quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

QMC techniques projects out the exact lowest-energy state: $\quad e^{-\left(H-E_{0}\right) \tau}\left|\Psi_{T}\right\rangle \rightarrow\left|\Psi_{0}\right\rangle$

The system is cooled down by evolving it in time

B. Pudliner et al., PRC 56, 1720 (1997)

GFMC electron 4He-cross sections

Virtually exact results for nuclear electroweak responses in the quasi-elastic region up to moderate values of \mathbf{q}. Initial and final state interactions fully accounted for.

Computational cost grows exponentially with the number of particles: currently limited to ${ }^{12} \mathrm{C}$
N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501

- Very good agreement in the quasielastic region when: one- and two-body currents are included
- Peak on the right: π production can not be described within this approach

GFMC CC $v_{\mu}{ }^{12} \mathrm{C}-$-cross sections

A.Lovato, NR et al, arXiv:2003.07710, PRX in press

Addressing future precision experiments

- Liquid Argon TPC Technology
J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012)

- The dominant reaction mechanism changes dramatically over the region of interest to oscillation experiment

Factorization Scheme and Spectral Function

For sufficiently large values of $|\mathbf{q}|$, the factorization scheme can be applied under the assumptions

$$
\left|\Psi_{f}\right\rangle \rightarrow|p\rangle \otimes\left|\Psi_{f}\right\rangle_{A-1}
$$

The nuclear cross section is given in terms of the one describing the interaction with individual bound nucleons

$$
d \sigma_{A}=\int d E d^{3} k d \sigma_{N} P(\mathbf{k}, E)
$$

The intrinsic properties of the nucleus are described by the Spectral Function \rightarrow EFT and nuclear many-body methods

Extended Factorization Scheme

- Two-body currents are included rewriting the hadronic final state as

$$
|f\rangle \rightarrow\left|P P^{\prime}\right\rangle a \bigotimes|f A-2\rangle
$$

$\xrightarrow{\longrightarrow}$

The hadronic tensor for two-body current processes reads

$$
\begin{aligned}
& W_{2 \mathrm{~b}}^{\mu \nu}(\mathbf{q}, \omega) \propto \int d E \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{d^{3} p}{(2 \pi)^{3}} P_{h}\left(\mathbf{k}, \mathbf{k}^{\prime}, E\right) 2 \sum_{i j}\left\langle k k^{\prime}\right| j_{i j}^{\mu \dagger}\left|p p^{\prime}\right\rangle_{a} \\
& \left\langle p p^{\prime}\right| j_{i j}^{\nu}\left|k k^{\prime}\right\rangle \delta\left(\omega-E+2 m_{N}-e(\mathbf{p})-e\left(\mathbf{p}^{\prime}\right)\right) \text {. } \\
& \text { NR et al, Phys.Rev. C99 (2019) no.2, } 025502 \\
& \text { - NR et al, Phys. Rev. Lett. 116, } 192501 \text { (2016) } \\
& \text { Dedicated code that automatically carries out the calculation of the } \\
& \text { MEC spin-isospin matrix elements, performing the integration using } \\
& \text { the Metropolis MC algorithm }
\end{aligned}
$$

Extended Factorization Scheme

- Production of real π in the final state

$$
|f\rangle \rightarrow\left|p_{\pi} p\right\rangle \otimes\left|f_{A-1}\right\rangle
$$

The hadronic tensor for two-body current processes reads

$$
\begin{aligned}
& W_{1 \mathrm{~b} 1 \pi}^{\mu \nu}(\mathbf{q}, \omega) \propto \int \frac{d^{3} k}{(2 \pi)^{3}} d E P_{h}(\mathbf{k}, E) \frac{d^{3} p_{\pi}}{(2 \pi)^{3}} \sum_{i}\langle k| j_{i}^{\mu \dagger}\left|p_{\pi} p\right\rangle\left\langle p_{\pi} p\right| j_{i}^{\nu}|k\rangle \\
& \times \delta\left(\omega-E+m_{N}-e(\mathbf{p})-e_{\pi}\left(\mathbf{p}_{\pi}\right)\right)
\end{aligned}
$$

Pion production elementary amplitudes derived within the extremely sophisticated Dynamic Couple Chanel approach; includes meson baryon channel and nucleon resonances up to $\mathrm{W}=2 \mathrm{GeV}$

- The diagrams considered resonant and non resonant π production

NR, et al, PRC100 (2019) no.4, 045503
H. Kamano et al, PRC 88, 035209 (2013)
S.X.Nakamura et al, PRD 92, 074024 (2015)

Electron and neutrino $-{ }^{12} \mathrm{C}$ cross sections-SF

θ NR, S. Nakamura, T.S.H. Lee, A. Lovato, PRC100 (2019) no.4, 045503

- We included in the Extended Factorization Scheme the one- and twobody current contributions and the pion production amplitudes.
- Good agreement with electron scattering data when all reaction mechanisms are included
- Ongoing calculation of flux folded cross sections

Electron and neutrino - ${ }^{12} \mathrm{C}$ cross sections-SF

$E_{e}=4050 \mathrm{MeV} \quad \theta=15.0^{\circ}$

preliminary

- We included the DCC predictions for two π production
- We plan to tackle the DIS further extending the convolution approach: spectral function+nucleon pdf

A QMC based approach to intranuclear cascade

Figure by T. Golan
The propagation of nucleons through the nuclear medium is crucial in the analysis of electron-nucleus scattering and neutrino oscillation experiments.

Describing nucleons' propagation in the nuclear medium would in principle require a fully quantummechanical description of the hadronic final state.

Due to its tremendous difficulty we follow a seminal work of Metropolis and develop a semi-classical intranuclear cascade (INC) that assume classical propagation between consecutive scatterings

Sampling nucleon configurations

The nucleons' positions utilized in the INC are sampled from 36000 GFMC configurations. For benchmark purposes we also sampled 36000 mean-field (MF) configurations from the single-proton distribution.

The differences between GFMC and MF configurations are apparent when comparing the two-body density distributions: repulsive nature of two-body interactions reduced the probability of finding two particles close to each other

Probability of interaction

To check if an interaction between nucleons occurs an accept-reject test is performed on the closest nucleon according to a probability distribution.

We use a cylinder probability distribution, this mimics a more classical billiard ball like system where each billiard ball has a radius In addition we consider a gaussian probability distribution

For benchmark purposes, we also implemented the mean free path approach, routinely used in event generators

$$
P=\sigma \bar{\rho} d \ell \quad \text { where a constant density is assumed } \quad \rho\left(r_{1}\right) \sim \rho\left(r_{1}+d \ell\right) \sim \bar{\rho}
$$

we sample a number $0 \leq x \leq 1\left\{\begin{array}{ll}x<P & \text { the interaction occurred, check Pauli blocking } \\ x>P & \mathbf{X}\end{array}\right.$ the interaction DID NOT occur

Results: proton-Carbon cross section

Reproducing proton-nucleus cross section measurements is an important test of the accuracy of the INC model.

- We define a beam of protons with energy E, uniformly distributed over an area A.
- We propagate each proton in time and check for scattering at each step.
- The Monte Carlo cross section is defined as:

$$
\sigma_{\mathrm{MC}}=A \frac{N_{\mathrm{scat}}}{N_{\mathrm{tot}}}
$$

The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID database in which only the elastic contribution is retained. The dashed lines used the NASA parameterization, which includes inelasticities.

Results: proton-Carbon cross section

The Gauss and cylinder probability distribution yield similar results

Large difference with the mean-free-path implementation: conceptual differences with respect to the previous cases

QMC and MF distribution lead to almost identical results: this observable does not depend strongly on correlations among the nucleons

The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID database in which only the elastic contribution is retained. The dashed lines used the NASA parameterization, which includes inelasticities.

Results: nuclear transparency

The nuclear transparency yields the average probability that a struck nucleon leaves the nucleus without interacting with the spectator particles

Nuclear transparency is measured in (e,e'p) scattering experiments

Simulation: we randomly sample a nucleon with kinetic energy Tp and propagate it through the nuclear medium

$$
T_{\mathrm{MC}}=1-\frac{N_{\mathrm{hits}}}{N_{\mathrm{tot}}}
$$

Gaussian and cylinder curves are consistent and correctly reproduces the data. Correlations do not seem to play a big role.

Results: correlation effects

Histograms of the distance traveled by a struck particle before the first interaction takes place for different values of the interaction cross section

When using QMC configurations, the hit nucleon is surrounded by a short-distance correlation hole: expected to propagate freely for $\sim 1 \mathrm{fm}$ before interacting

For $\sigma=0.5 \mathrm{mb}$ the MF distribution peaks toward smaller distances than the QMC one: originates from the repulsive nature of the nucleon-nucleon potential

For $\sigma=50 \mathrm{mb}$ large cylinder, MF and QMC distributions become similar. The propagating particle is less sensitive to the local distribution of nucleons and more sensitive to the integrated density over a larger volume, reducing the effect of correlations

Future theory efforts

S.Gandolfi, D.Lonardoni, et al, Front.Phys. 8 (2020) 117

Using more approximate methods, calculation of lepton-Ar cross sections. Extend the factorization scheme to the DIS

Intranuclear cascade: include π degrees of freedom: π production, absorption and elastic scattering as well as in medium corrections

Theoretical uncertainty estimate: truncation of the chiral expansion and statistical uncertainty of the ab-initio method

Devise an hybrid QMC approach able to describe larger nuclei such as ${ }^{16} \mathrm{O}$ and use machine learning algorithms to obtain cross sections

C.Barbieri, NR, V.Somà, PRC 100 (2019) 6, 062501

Thank you for your attention!

Extension to Deep Inelastic Scattering

I plan to extend the Factorization scheme to treat the DIS region

$$
d \sigma_{A}=\int d E d^{3} k d \sigma_{N} P(\mathbf{k}, E)
$$

$d \sigma_{N} \propto W_{2}\left(\omega, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(\omega, q^{2}\right) \sin ^{2} \frac{\theta}{2}$

$$
\begin{aligned}
W_{1}^{p} & =-\frac{q^{2}}{4 m^{2}} G_{M_{p}}^{2} \delta\left(\omega+\frac{q^{2}}{2 m}\right) \\
W_{2}^{p} & =\frac{G_{E_{p}}^{2}-q^{2} /\left(4 m^{2}\right) G_{M_{p}}^{2}}{1-q^{2} /\left(4 m^{2}\right)} \delta\left(\omega+\frac{q^{2}}{2 m}\right)
\end{aligned}
$$

n^{n}

Integral Transform Techniques

Nuclear responses obtained with QMC techniques (more in detail Greens' Function Monte Carlo)

$$
R_{\alpha \beta}(\omega, \mathbf{q})=\sum_{f}\langle 0| J_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| J_{\beta}(\mathbf{q})|0\rangle \delta\left(\omega-E_{f}+E_{0}\right)
$$

Valuable information can be obtained from the integral transform of the response function

$$
E_{\alpha \beta}(\sigma, \mathbf{q})=\int d \omega K(\sigma, \omega) R_{\alpha \beta}(\omega, \mathbf{q})=\left\langle\psi_{0}\right| J_{\alpha}^{\dagger}(\mathbf{q}) K\left(\sigma, H-E_{0}\right) J_{\beta}(\mathbf{q})\left|\psi_{0}\right\rangle
$$

Integral Transform Techniques

Current solution for the quasielastic region: Maximum Entropy Techniques
A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502

We are now exploring new strategies, based on machine learning techniques, to improve the accuracy of the inversion and to better estimate the associated uncertainties

Integral Transform Techniques

Nuclear responses obtained with QMC techniques (more in detail Greens' Function Monte Carlo)

$$
R_{\alpha \beta}(\omega, \mathbf{q})=\sum_{f}\langle 0| J_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| J_{\beta}(\mathbf{q})|0\rangle \delta\left(\omega-E_{f}+E_{0}\right)
$$

Valuable information can be obtained from the integral transform of the response function

$$
E_{\alpha \beta}(\sigma, \mathbf{q})=\int d \omega K(\sigma, \omega) R_{\alpha \beta}(\omega, \mathbf{q})=\left\langle\psi_{0}\right| J_{\alpha}^{\dagger}(\mathbf{q}) K\left(\sigma, H-E_{0}\right) J_{\beta}(\mathbf{q})\left|\psi_{0}\right\rangle
$$

Integral Transform Techniques

Current solution for the quasielastic region: Maximum Entropy Techniques
A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502

We are now exploring new strategies, based on machine learning techniques, to improve the accuracy of the inversion and to better estimate the associated uncertainties

Predicting Argon cross sections

- ${ }^{40} \operatorname{Ar}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ and ${ }^{48} \mathrm{Ti}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ cross sections w-w/o FSI
C. Barbieri, NR, and V. Somà, arXiv:1907.01122

- Charge current and neutral current v_{μ} scattering on ${ }^{12} \mathrm{C}$ and Ar for $\mathrm{E}_{\nu}=1 \mathrm{GeV}$

- The band comes from a first estimate of the uncertainty on the spectral function calculation obtained by varying the model-space and the harmonic oscillator frequency

Global Fermi gas: independent particles

Protons and neutrons are considered as moving freely within the nuclear volume

Simple picture of the nucleus: only statistical correlations are retained (Pauli exclusion principle)

The energy of the highest occupied state is the Fermi energy: E_{F}, B^{\prime} constant binding energy

The Global Fermi gas model has been widely used in comparisons of neutrino scattering data.

MiniBooNE data analysis requires $\mathrm{M}_{\mathrm{A}} \sim 1.35 \mathrm{GeV}$ to reproduce the data: incompatible with former measurements in bubble chamber: $\mathrm{M}_{\mathrm{A}} \sim 1.03 \mathrm{GeV}$

Nuclear effects can explain the axial mass puzzle

[^0]
The Spectral Function of finite nuclei

\% Two different many-body methods to compute the spectral function of finite nuclei

- Correlated Basis Function: the SF obtained within CBF and using the Local Density Approximation

- Self Consistent Green's Function : ab-initio method, the SF obtained solving the Dyson Equation for the corresponding propagator

V. Somà et al, PRC87 (2013) no.1, 011303
\# Results currently available are for electron and neutrino scattering on:
${ }^{4} \mathrm{He},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ within the CBF

${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \mathrm{Ca}, \mathrm{Ti}$ and Ar within the SCGF

The CBF Spectral Function of finite nuclei

- Within the Fermi Gas model we can define the SF as:

$$
P^{\mathrm{FG}}(\mathbf{k}, E)=\delta\left(E-\epsilon_{B}\right) \theta\left(p_{F}-|\mathbf{k}|\right)
$$

Realistic SF: 80\% shell model picture, 20\% SRC

Fermi gas contribution

- High energy and momentum correlated pairs

- VMC: exact calculation of the momentum distribution including SRC pairs
- CBF: calculation
- 1h corresponds to the MF, rapidly drops
- FG: unrealistic momentum distribution, totally missing the high momentum component

Two-body (phenomenological) potential

Realistic local, configuration-space potential are controlled by thousands np and pp scattering data below 350 MeV of the Nijmegen and Granada databases

Nuclear potentials are strongly spin-isospin dependent. Argonne \mathbf{v}_{18} can be written as

$$
\begin{gathered}
v_{18}\left(r_{i j}\right)=v_{i j}^{\gamma}+v_{i j}^{\pi}+v_{i j}^{I}+v_{i j}^{S}=\sum_{p=1}^{18} v^{p}\left(r_{i j}\right) O_{i j}^{p} \\
\text { - Static part } O_{i j}^{p=1-6}=\left(1, \sigma_{i j}, S_{i j}\right) \otimes\left(1, \tau_{i j}\right) \\
\text { - Spin-orbit } \quad O_{i j}^{p=7-8}=\mathbf{L}_{i j} \cdot \mathbf{S}_{i j} \otimes\left(1, \tau_{i j}\right)
\end{gathered}
$$

Some of the Feynman diagrams effectively included in the Argonne potential

[^0]: - MiniBooNE collaboration, PRD 81 (2010) 092005

