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Addressing Neutrino-Oscillation Physics
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Detectors measure the neutrino interaction rate:
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A  quantitative knowledge of σ(E) and fσ(E) is crucial to precisely extract ν oscillation parameters
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To study neutrinos we need nuclei

Number of Interactions = � ⇥ �⇥N
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? Where does Nuclear Physics come into play
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Utilize heavy target in neutrino detectors to maximize interactions→ understand nuclear structure

Minerba Betancourt

• We are using heavy targets for oscillation experiments, such as carbon and liquid argon
• Using heavy targets involves modeling nuclear effects
• We need to model nuclear effects on a range of nuclei

All Accelerator-Based Experiments at Fermilab
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3 The NOMAD detector

The NOMAD detector [29] consisted of an active target
of 44 drift chambers with a total fiducial mass of 2.7 tons,
located in a 0.4 Tesla dipole magnetic field as shown in
Fig. 1. The X ×Y ×Z total volume of the drift chambers
is about 300× 300 × 400 cm3.

Drift chambers [37], made of low Z material served
the dual role of a nearly isoscalar target1 for neutrino in-
teractions and of tracking medium. The average density
of the drift chamber volume was 0.1 g/cm3. These cham-
bers provided an overall efficiency for charged track re-
construction of better than 95% and a momentum resolu-
tion which can be approximated by the following formula
σp

p ≈ 0.05√
L

⊕ 0.008p√
L5

, where the momentum p is in GeV/c

and the track length L in m. Reconstructed tracks were
used to determine the event topology (the assignment of
tracks to vertices), to reconstruct the vertex position and
the track parameters at each vertex and, finally, to iden-
tify the vertex type (primary, secondary, etc.). A transi-
tion radiation detector (TRD) [38,39] placed at the end
of the active target was used for particle identification.
Two scintillation counter trigger planes [40] were used to
select neutrino interactions in the NOMAD active target.
A lead-glass electromagnetic calorimeter [41,42] located
downstream of the tracking region provided an energy res-
olution of 3.2%/

√

E[GeV]⊕1% for electromagnetic show-
ers and was crucial to measure the total energy flow in
neutrino interactions. In addition, an iron absorber and
a set of muon chambers located after the electromagnetic
calorimeter was used for muon identification, providing
a muon detection efficiency of 97% for momenta greater
than 5 GeV/c.

The NOMAD neutrino beam consisted mainly of νµ’s
with an about 7% admixture of ν̄µ and less than 1% of
νe and ν̄e. More details on the beam composition can be
found in [30].

The main goal of the NOMAD experiment was the
search for neutrino oscillations in a wide band neutrino
beam from the CERN SPS [43,44]. A very good quality
of event reconstruction similar to that of bubble chamber
experiments and a large data sample collected during four
years of data taking (1995-1998) allow for detailed studies
of neutrino interactions.

3.1 Reconstruction of QEL events in the NOMAD
detector

A detailed information about the construction and perfor-
mance of the NOMAD drift chambers as well as about the
developed reconstruction algorithms is presented in [37].
Let us briefly describe some features relevant to the cur-
rent QEL analysis. The muon track is in general easily
reconstructed. However, when we study protons emitted
in the νµ QEL two-track candidates we deal with protons

1 the NOMAD active target is nearly isoscalar (nn : np =
47.56% : 52.43%) and consists mainly of Carbon; a detailed de-
scription of the drift chamber composition can be found in [37]
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Fig. 1. A side-view of the NOMAD detector.

with momentum well below 1 GeV/c and with emission
angle above 60 degrees. For positive particles in the up-
ward hemisphere of the NOMAD detector such conditions
mean that these particles are almost immediately making
a U-turn due to the magnetic field. There were no spe-
cial efforts invested into tuning the NOMAD reconstruc-
tion program to reconstruct this particular configuration
(which is rather difficult due to the fact that these protons
are in the 1/β2 region of ionization losses, traversing much
larger amount of material, crossing drift cells at very large
angles where the spacial resolution of the drift chambers is
considerably worse and where a large amount of multiple
hits is produced, etc.). Some of these effects are difficult
to parametrize and to simulate at the level of the detec-
tor response in the MC simulation program. Thus, the
reconstruction efficiencies for this particular configuration
of outgoing protons could be different for the simulated
events and real data.

Let us stress, however, that for protons emitted down-
wards we observed a good agreement between data and
MC.

In the current analysis it was important to disentangle
the reconstruction efficiency effects discussed above from
the effects induced by intranuclear cascade (which could
change the proton kinematics and thus introduce drastic
changes in the final results due to the efficiency mismatch
between simulated and real data). In order to get rid of an
interplay between these two effects it was crucial to choose
the region in the detector with a stable reconstruction effi-
ciency. This could be achieved by selecting νµ QEL events
where protons are emitted in the lower hemisphere of the
NOMAD detector. This approach allowed to find the best
set of parameters for description of the intranuclear cas-
cade.

The most upsteam drift chamber was used as an addi-
tional veto to remove through-going muons from neutrino
interactions upstream of the NOMAD active target. This
is crucial for the study of single track events.Minerba Betancourt/Moriond QCD 2014

• Fine-grained scintillator tracker surrounded by calorimeters
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Fig. 1. A side-view of the NOMAD detector.
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
† dbd@virginia.edu
‡ ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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• Ab-initio calculations (GFMC) 
—able to describe how nuclei 
emerge starting from neutron 
and proton interactions—
provide an accurate predictions 
of the QE region including one- 
and two-body currents 
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• More approximate approach: 
Extended Factorization scheme  
+ Semi-phenomenological SF 
have been introduced to tackle 
QE, dip and π-production 
regions.
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The cross section of the process in which a lepton 
scatters off a nucleus is given by
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Nuclear response to the electroweak probe:



The basic model of nuclear theory
At low energy, the effective degrees of freedom are pions and nucleons:
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 The electromagnetic current is constrained by the Hamiltonian through the continuity equation
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Quantum Monte Carlo approach
We want to solve the Schrödinger equation  

H (R; s1 . . . sA, ⌧1 . . . ⌧A) = E (R; s1 . . . sA, ⌧1 . . . ⌧A)

Any trial wave function can be expanded in the complete set of eigenstates of the the 
Hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

QMC techniques projects out the exact lowest-energy state: 
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Quantum Monte Carlo

Zero Temperature

 0 = exp [�H⌧ ]  T

H =
X

i

p
2
i

2m
+

X

i<j

V0 �(rij)

Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
and isospin

Brownian motion

 =
X

�(�)

X

�(⌧)

a(�(�),�(⌧)) |��i |�⌧ i

The system is cooled down by evolving it in time

E0=-28.3 MeV

e�(H�E0)⌧ | T i ! | 0i



GFMC electron 4He-cross sections

✐ N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501 
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].

✐ N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501  

• Very good agreement in the quasielastic region when: one- and two-body currents are included
• Peak on the right: π production can not be described within this approach

Virtually exact results for nuclear electroweak responses in the 
quasi-elastic region up to moderate values of q. 

Initial and final state interactions fully accounted for.

Computational cost grows exponentially with the number of 
particles: currently limited to 12C



✐A.Lovato, NR et al, arXiv:2003.07710, PRX in press
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

MiniBooNE
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [54]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ⇤A =1.0 GeV.

PWIA response functions follow from

R
PWIA
↵�

(q,!)=

Z
dpN(p)x↵�(p,q,!)

⇥ �

 
! � E � |p+ q|2

2m
� p

2

2mA�1

!
, (11)

where the factors x↵�(p,q,!) denote appropriate combi-
nations of the CC components (the same single-nucleon
CC utilized in the GFMC calculations), and N(p) is the
nucleon momentum distribution in 12C (as calculated in
Ref. [79]). The e↵ects of nuclear interactions are sub-
sumed in the single parameter E, which can be inter-
preted as an average separation energy (we take the value
E ⇡ 20 MeV). The remaining terms in the �-function

are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA�1. From these R

PWIA
↵�

we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering x↵�(p,q,!) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [54]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ⇤A =1.0 GeV.

PWIA response functions follow from
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Z
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where the factors x↵�(p,q,!) denote appropriate combi-
nations of the CC components (the same single-nucleon
CC utilized in the GFMC calculations), and N(p) is the
nucleon momentum distribution in 12C (as calculated in
Ref. [79]). The e↵ects of nuclear interactions are sub-
sumed in the single parameter E, which can be inter-
preted as an average separation energy (we take the value
E ⇡ 20 MeV). The remaining terms in the �-function

are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA�1. From these R

PWIA
↵�

we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering x↵�(p,q,!) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
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FIG. 6. T2K flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [56]. Calculated cross sections are obtained with ⇤A =1.0 GeV.

count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
on the nucleon and deuteron, and neutrino scattering
data on the proton and deuteron. In particular, the Q

2-
dependence of the nucleon axial form factor GA(Q2) is
of a dipole form with a cuto↵ ⇤A ⇡ 1 GeV. The nucleon-
to-� axial coupling constant g

⇤
A

has been fixed by re-
producing the Gamow-Teller matrix element measured
in tritium � decay, while the Q2-dependence of its (tran-

sition) form factor G
⇤
A
(Q2) has simply been assumed to

be the same as that of GA(Q2), since no experimental
information is currently available on G

⇤
A
(Q2).

First-principles LQCD calculations of nucleon (and,
possibly, nucleon-to-�) electroweak form factors could
potentially have a significant impact on calculations of
neutrino-nucleus cross sections, since these form factors
constitute essential inputs to the nuclear CC. This is
especially the case for GA(Q2) and the induced pseu-
doscalar form factor GP (Q2), whose Q

2-dependence is
experimentally poorly known. In this context, it is in-
teresting to note that recent LQCD studies [47, 48, 80]
find the Q

2 fall-o↵ of GA(Q2) with increasing Q
2 signif-

icantly less drastic than implied by the dipole behavior
with ⇤A ⇡ 1 GeV. They also find the nucleon isovector
vector form factors in agreement with experimental data
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-
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https://arxiv.org/pdf/2003.07710.pdf


Addressing future precision experiments
• Liquid Argon TPC Technology ✐ J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012) 

• The dominant reaction mechanism changes dramatically over the region of interest to oscillation 
experiment
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Ar has a 
complicated 
structure, 
out of the 
reach of 
most of the 
ab initio 
methods 
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Factorization Scheme and Spectral Function
 For sufficiently large values of |q|, the factorization scheme can be applied under the assumptions

 The nuclear cross section is given in terms of the one 
describing the interaction with individual bound 
nucleons 

J↵ =
X

i

ji↵

 The intrinsic properties of the nucleus are 
described by the Spectral Function➝ EFT 
and nuclear many-body methods

| f i ! |pi ⌦ | f iA�1

d�A =

Z
dEd3k d�NP (k, E)

| 0i | f iA�1

|pi



Extended Factorization Scheme
• Two-body currents are included rewriting the hadronic final state as 

|fi ! |pp0ia ⌦ |fA�2i

Relativistic two-body 
currents


Wµ⌫
2b (q,!) /

Z
dE

d3k

(2⇡)3
d3k0

(2⇡)3
d3p

(2⇡)3
Ph(k,k

0, E)2
X

ij

hk k0|jµij
†|p p0ia

⇥ hp p0|j⌫ij |k k0i�(! � E + 2mN � e(p)� e(p0)) .

The hadronic tensor for two-body current processes reads

�

⇡
⇡

�

✐ NR et al, Phys.Rev. C99 (2019) no.2, 025502 

Dedicated code that automatically carries out the calculation of the 
MEC spin-isospin matrix elements, performing the integration using 
the Metropolis MC algorithm

✐ NR et al, Phys. Rev. Lett. 116, 192501 (2016) 



Extended Factorization Scheme
• Production of real π in the final state

|fi ! |p⇡pi ⌦ |fA�1i

Wµ⌫
1b1⇡(q,!) /

Z
d3k

(2⇡)3
dEPh(k, E)

d3p⇡
(2⇡)3

X

i

hk|jµi
†|p⇡pihp⇡p|j⌫i |ki

⇥ �(! � E +mN � e(p)� e⇡(p⇡))

Pion production elementary amplitudes derived within the extremely sophisticated Dynamic Couple 
Chanel approach; includes meson baryon channel and nucleon resonances up to W=2 GeV


The hadronic tensor for two-body current processes reads

✐ S.X.Nakamura et al, PRD 92, 074024 (2015)

✐ H. Kamano et al, PRC 88, 035209 (2013)

✐ NR, et al, PRC100 (2019) no.4, 045503 

• The diagrams considered resonant and non resonant π production

+

�

⇡ ⇡



Electron and neutrino -12C cross sections-SF
✐ NR, S. Nakamura, T.S.H. Lee, A. Lovato, PRC100 (2019) no.4, 045503 
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FIG. 8. Left panel: Inclusive 12C(e,e’) cross sections at 620 MeV and 36� scattering angle. The red and blue curves correspond
to the CBF and SCGF SF calculations, respectively. The dashed lines correspond to the IA calculation in which the outgoing
nucleon is free while in the solid ones FSI corrections have been taken into account. Right panel: inclusive Ar(e,e’) cross section
at 2.2 GeV and 15.5� scattering angle. The solid (dashed) line shows the quasielastic cross section without (with) the inclusion
of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
and dashed (red) line correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines
represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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FIG. 8. Left panel: Inclusive 12C(e,e’) cross sections at 620 MeV and 36� scattering angle. The red and blue curves correspond
to the CBF and SCGF SF calculations, respectively. The dashed lines correspond to the IA calculation in which the outgoing
nucleon is free while in the solid ones FSI corrections have been taken into account. Right panel: inclusive Ar(e,e’) cross section
at 2.2 GeV and 15.5� scattering angle. The solid (dashed) line shows the quasielastic cross section without (with) the inclusion
of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
and dashed (red) line correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines
represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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FIG. 8. Left panel: Inclusive 12C(e,e’) cross sections at 620 MeV and 36� scattering angle. The red and blue curves correspond
to the CBF and SCGF SF calculations, respectively. The dashed lines correspond to the IA calculation in which the outgoing
nucleon is free while in the solid ones FSI corrections have been taken into account. Right panel: inclusive Ar(e,e’) cross section
at 2.2 GeV and 15.5� scattering angle. The solid (dashed) line shows the quasielastic cross section without (with) the inclusion
of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
and dashed (red) line correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines
represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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FIG. 8. Left panel: Inclusive 12C(e,e’) cross sections at 620 MeV and 36� scattering angle. The red and blue curves correspond
to the CBF and SCGF SF calculations, respectively. The dashed lines correspond to the IA calculation in which the outgoing
nucleon is free while in the solid ones FSI corrections have been taken into account. Right panel: inclusive Ar(e,e’) cross section
at 2.2 GeV and 15.5� scattering angle. The solid (dashed) line shows the quasielastic cross section without (with) the inclusion
of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
and dashed (red) line correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines
represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed

•  We included in the 
Extended Factorization 
Scheme the one- and two-
body current contributions 
and the pion production 
amplitudes. 

• Good agreement with 
electron scattering data 
when all reaction 
mechanisms are included

• Ongoing calculation of flux 
folded cross sections



Electron and neutrino -12C cross sections-SF

preliminary
• We included the DCC predictions for two π production

• We plan to tackle the DIS further extending the convolution approach: 
spectral function+nucleon pdf



A QMC based approach to intranuclear cascade

The propagation of nucleons through the nuclear 
medium is crucial in the analysis of electron-nucleus 
scattering and neutrino oscillation experiments.


Final state interactions

Introduction
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FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

Describing nucleons’ propagation in the nuclear 
medium would in principle require a fully quantum-
mechanical description of the hadronic final state. 


Due to its tremendous difficulty we follow a seminal 
work of Metropolis and develop a semi-classical 
intranuclear cascade (INC) that assume classical 
propagation between consecutive scatterings 

J.Isaacson, W. Jay, P. Machado, A. Lovato, NR, arXiv:2007.15570 

Figure by T. Golan
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Sampling nucleon configurations4

tic NN and 3N potentials, and consistent one- and two-
body meson-exchange currents [50]. GFMC begins with
the construction of a trial wave function  T that is a
symmetrized product of two- and three-body correla-
tion operators acting on an antisymmetric A-body single-
particle wave function that has the proper quantum num-
bers for the state of interest. The variational parameters
in  T are found by minimizing the energy expectation
value

E0  ET =
h T |H| T i
h T | T i

, (2)

where E0 is the true ground-state energy of the system.
The calculation of ET requires the numerical solution of
a multidimensional integral that is carried out employing
standard Metropolis Monte Carlo sampling in configura-
tion space.

GFMC then projects out the lowest eigenstate  0 of
the given quantum numbers starting from  T by per-
forming a propagation in imaginary time ⌧

| 0i = lim
⌧!1

exp[�(H � E0)⌧ ]| T i. (3)

The propagation | (⌧)i = exp[�(H � E0)⌧ ]| T i is car-
ried out as a series of many small imaginary-time steps
�⌧ . Expectation values of operators are evaluated as
mixed matrix elements O(⌧) = h T |O| (⌧)i, and the
behavior as a function of ⌧ analyzed to obtain con-
verged results. Because H and exp[�(H � E0)⌧ ] com-
mute, the mixed estimate is the exact expectation of
h (⌧/2)|O| (⌧/2)i but linear extrapolations are used to
evaluate other quantities.

In addition to binding energies the GFMC provides
detailed information on the distribution of nucleons in a
nucleus in both coordinate and momentum space, which
are interesting in multiple experimental settings. For ex-
ample, the mixed-estimate of the single-nucleon density
is calculated as

⇢N (r) =
1

4⇡r2
⌦
 T

��
X

i

�(r � |ri|)PN

�� (⌧)
↵
, (4)

where N = p, n; PNi =
1±⌧zi

2 is the neutron or proton
projector operator; and, ⇢N integrates to the number of
protons or neutrons. The two-body density distribution,
yielding the probability of finding two nucleons with sep-
aration r, is defined as

⇢NN (r) =
1

4⇡r2
⌦
 T

��
X

i<j

�(r � |rij |)PNiPNj

�� (⌧)
↵
. (5)

The positions of the constituents protons and neutrons
utilized in the nuclear cascade algorithm are sampled
from 36000 GFMC configurations. We employ the so-
called constrained-path approximation [59] to make sure
that their Monte Carlo weights remain positive, thereby
facilitating their usage in the cascade algorithm. As a
consequence, the single-proton distribution displayed by

FIG. 3: Nucleon density in carbon from Green’s
function Monte Carlo (red) and mean field (blue)

configurations.

the blue solid circles of Fig. 3 is slightly di↵erent from the
results reported in Ref. [60], which have been obtained
performing fully unconstrained imaginary-time propaga-
tions. Since we neglect the charge-symmetry breaking
terms in the Hamiltonian, and since 12C is isospin sym-
metric, the single-neutron distribution is identical to that
of the proton.
For benchmark purposes, we also sample 36000 mean-

field (MF) configurations from the single-proton distribu-
tion. The corresponding single-proton densities coincide
by construction with the GFMC one, as shown in Fig. 3.
However, the di↵erences between GFMC and MF con-
figurations become apparent when comparing the corre-
sponding two-body density distributions represented in
Fig. 4. The short-range repulsive core of the NN in-
teraction prevents two nucleons from being close to each
other. As a consequence, the pp and np GFMC density
distributions are small at short separation distances. Fur-
thermore, the di↵erence between the GFMC pp and np
density distributions around r = 1 fm can be attributed
to the strong tensor correlations induced by the one-pion-
exchange part of the NN interaction, which is further en-
hanced by the two-pion-exchange part of the 3N poten-
tial. Note that the short-range behavior of ⇢NN , which is
largely nucleus independent, does depend strongly on the
NN interaction model [61]. On the other hand, the MF
ones do not exhibit this rich behavior as the correlations
among nucleons are entirely disregarded.

B. Nucleon momentum distribution

As mentioned above, when a nucleon is struck, its mo-
mentum is obtained assuming either a local or global
Fermi gas distribution. In the case of the local Fermi gas,

5

FIG. 4: Proton-proton (top panel) and proton-neutron
(bottom panel) correlation functions in carbon from
Green’s function Monte Carlo (red) and mean field

(blue) configurations.

the magnitude of the three-momentum is randomly sam-
pled in the interval [0, kN

F (r)] where kN
F (r) is the Fermi

Momentum defined in terms of the single nucleon den-
sity kN

F (r) = (⇢N (r)3⇡3)1/3 and N = p, n. In the case
of the global Fermi gas, the momentum is determined in
the same way, but kN

F is position independent. The lo-
cal Fermi gas model is known to provide a more realistic
nucleon momentum distribution for finite nuclei than the
global Fermi gas. For this reason, although both mod-
els are implemented in our code, we only present results
based on the local Fermi gas predictions. In the future,
we plan to include more accurate nucleon momentum dis-
tribution, based on state-of-the-art many-body calcula-
tions that properly account for nuclear correlations.

C. Nucleon-nucleon interaction algorithm

To check if an interaction between nucleons occurs,
an accept-reject test is performed on the closest nu-
cleon according to a probability distribution P (b) (see
e.g. Ref. [62] for similar considerations) where b is the
impact parameter. We impose two conditions on this
probability,

P (0) = 1 and

Z 2⇡

0

Z 1

0
d' bdbP (b) = �, (6)

where the cross section � depends on the incoming parti-
cle content and the center-of-mass energy, which is sam-
pled from the nuclear configuration. The second condi-
tion ensures that the mean free path of a nucleon trav-
eling in a medium of uniform density is �mfp = 1/�⇢̄,
where ⇢̄ is the number density.
Two implementations of P (b) have been studied here.

The first we dub the cylinder interaction probability,

Pcyl(b) = ⇥(�/⇡ � b2), (7)

where ⇥(x) = 1 if x � 0, else ⇥(x) = 0. This probability
mimics a more classical, billiard ball like system, where
each billiard ball has a radius ⇡

p
�/⇡. The second

implementation is the Gaussian interaction probability

PGau(b) ⌘ exp

✓
�⇡b2

�

◆
, (8)

which is inspired by the work of Ref. [62]. Both
Pcyl and PGau satisfy the conditions in Eq. (6). We
use the nucleon-nucleon cross sections from the SAID
database [63] obtained using GEANT4 [64], or from the
NASA parametrization [65].

D. Phase space, Pauli blocking and
after-interaction

If an interaction occurred, the phase space of the
outgoing particles is generated using fully di↵erential
nucleon-nucleon cross sections. Note that, at the mo-
ment, we only include protons and neutrons in our INC
model. Pauli blocking enforces Fermi-Dirac statistics for
the nucleons and amounts to testing whether their final-
state momenta are above the Fermi momentum. Two dif-
ferent models of the Pauli exclusion principle have been
approximately implemented. The global and local Pauli
blocking routines essentially forbid a scattering if the mo-
mentum of any of the final state particles is below the av-
erage Fermi momentum (for the global Fermi gas model)
or the local Fermi momentum (for the local Fermi gas
model), respectively. We emphasize again that, although
we have implemented the global Fermi gas model, we do
not report any results using it.
If the interaction took place, the outgoing particles are

both treated as propagating particles, and a formation

The nucleons’ positions utilized in the INC are sampled from 36000 GFMC configurations. 
For benchmark purposes we also sampled 36000 mean-field (MF) configurations from the 
single-proton distribution.

The differences between GFMC and MF configurations are apparent when comparing the 
two-body density distributions: repulsive nature of two-body interactions reduced the 
probability of finding two particles close to each other
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FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated

To check if an interaction between nucleons occurs an accept-reject test is 
performed on the closest nucleon according to a probability distribution.

We use a cylinder probability distribution, this mimics a more classical 
billiard ball like system where each billiard ball has a radius 

In addition we consider a gaussian probability distribution

For benchmark purposes, we also implemented the mean free path approach, routinely used in 
event generators

P = �⇢̄d` ⇢(r1) ⇠ ⇢(r1 + d`) ⇠ ⇢̄where a constant density is assumed 

we sample a number 0  x  1 { x < P

x > P ❌

the interaction occurred, check Pauli blocking

the interaction DID NOT occur
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Reproducing proton-nucleus cross section 
measurements is an important test of the 
accuracy of the INC model.
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path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

• We define a beam of protons with energy E, 
uniformly distributed over an area A. 


• We propagate each proton in time and check 
for scattering at each step. 


• The Monte Carlo cross section is defined as:


�MC = A
Nscat

Ntot

The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID 
database in which only the elastic contribution is retained. The dashed lines used the NASA 
parameterization , which includes inelasticities. 
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The Gauss and cylinder probability 
distribution yield similar results 
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path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

Large difference with the mean-free-path 
implementation: conceptual differences 
with respect to the previous cases

QMC and MF distribution lead to almost 
identical results: this observable does not 
depend strongly on correlations among 
the nucleons
 The solid lines have been obtained using the 

nucleon- nucleon cross sections from the SAID 
database in which only the elastic contribution is 
retained. The dashed lines used the NASA 
parameterization , which includes inelasticities. 




Results: nuclear transparency
The nuclear transparency yields the 
average probability that a struck nucleon 
leaves the nucleus without interacting 
with the spectator particles 

Nuclear transparency is measured in 
(e,e’p) scattering experiments

Simulation: we randomly sample a 
nucleon with kinetic energy Tp and 
propagate it through the nuclear medium
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FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated

TMC = 1� Nhits

Ntot

Gaussian and cylinder curves are consistent and correctly reproduces the data. Correlations do not 
seem to play a big role.



Results: correlation effects

Histograms of the distance traveled by a struck particle 
before the first interaction takes place for different 
values of the interaction cross section
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FIG. 9: The four panels corresponds to histograms of the distance traveled by a struck particle before the first
interaction takes place for di↵erent values of the interaction cross section. The results in blue and red correspond to

MF and QMC initial nucleon configurations, respectively. For each of the panels we also report the fixed
cross-section used, the total number of events generated, and the number of hits for each configuration.

in Refs. [72, 77–80]. As discussed in Ref. [81] the hit nu-
cleon is surrounded by a short-distance correlation hole
produced by both the Pauli principle and the repulsive
nature of realistic nuclear interactions. Because of this
correlation hole, the stuck nucleon is expected to freely
propagate for ⇠ 1 fm before interacting with any of the
background particles. To test the validity of these ob-
servations in our INC model, in Fig. 9 we report the
histograms of the distance traveled by a struck nucleon
before its first interaction occurs—we stop the simulation
afterwards—with each panel corresponding to a di↵erent
value of the interaction cross section. In order to gauge
the e↵ect of nuclear correlations, the initial positions of
the nucleons are sampled from either MF (blue) or QMC
(red) configurations. A random nucleon inside the nu-
cleus is recoiled and assigned a momentum of 200 MeV.
Pauli Blocking has been neglected here to isolate the de-
pendence of the results on the spatial distribution of the
nucleons. We employ the cylinder algorithm and use a
fixed cross section—which determines the cylinder base
area—varying between 0.5 and 100 mb.

For � = 0.5 and 10 mb, the volume spanned by the
propagating particle is very small. The first and second
panels of Fig. 9 clearly show the MF distribution peak-
ing toward smaller distances than the QMC distribution.
This di↵erence primarily originates from the short-range
repulsion of the AV18 potential that reduces the prob-
ability of finding two nucleons close to each other and
allows the struck particle to propagate longer before in-
teracting. This e↵ect is more pronounced for cross sec-
tions below about 10 mb = 1 fm2 since correlations a↵ect
nucleon configuration for inter-particle distances within
1 ⇠ 2 fm, as can be seen in Fig. 4. On the other hand,
larger cross sections yield larger cylinders. In this case,
the propagating particle becomes less sensitive to the lo-
cal distribution of nucleons and more sensitive to the in-
tegrated density in a larger volume, reducing the e↵ect
of correlations. For these larger cross sections, the MF
and QMC event distributions follow the same trend, as
can be seen in the lower panels of Fig. 9, corresponding
to � = 50 and 100 mb.

In each panel we also report the number of hits and the

When using QMC configurations, the hit nucleon is 
surrounded by a short-distance correlation hole: 
expected to propagate freely for ~ 1 fm before interacting

For σ=0.5 mb the MF distribution peaks toward 
smaller distances than the QMC one: originates from 
the repulsive nature of the nucleon-nucleon potential

For σ=50 mb large cylinder, MF and QMC distributions 
become similar. The propagating particle is less 
sensitive to the local distribution of nucleons and more 
sensitive to the integrated density over a larger volume, 
reducing the effect of correlations 
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Figure 2. Ground-state energies in A  16 nuclei. For each nucleus, experimental results [122] are
shown in green at the center. GFMC (AFDMC) results for the NV2+3-Ia [11] (GT+E⌧ -1.0 [89]) potential
are shown in red (blue) to the left (right) of the experimental values. For the NV2+3-Ia (GT+E⌧ -1.0)
potential, the colored bands include statistical (statistical plus systematic) uncertainties.

potential. This is because the full uncertainty evaluation includes both statistical and theoretical errors.
Both QMC methods imply statistical uncertainties of the order of few percent. For the �-less potential,
the theoretical errors coming from the truncation of the chiral expansion dominate compared to the sta-
tistical errors. Considering the next order in the chiral expansion should reduce theoretical uncertainties,
and work is currently being done in developing such potentials.

Figure 4 shows the charge radii of A  16 nuclei for the NV2+3-Ia and GT+E⌧ -1.0 potentials, with
respect to the available experimental data. The expectation value of the charge radius is derived from the
point-proton radius rpt using the relation
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uncertainty of the ab-initio method

Using more approximate methods, 
calculation of lepton-Ar cross sections.

Extend the factorization scheme to the DIS

Intranuclear cascade: include π degrees of 
freedom: π production, absorption and elastic 
scattering as well as in medium corrections

 25✐ C.Barbieri, NR, V.Somà, PRC 100 (2019) 6, 062501

 

✐ S.Gandolfi, D.Lonardoni, et al, Front.Phys. 8 (2020) 117 

Future theory efforts 

 Devise an hybrid QMC approach able to 
describe larger nuclei such as 16O and use 
machine learning algorithms to obtain cross 
sections
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Thank you for your attention!



Extension to Deep Inelastic Scattering
 I plan to extend the Factorization scheme to treat the DIS region
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 Nuclear responses obtained with QMC techniques (more in detail Greens’ Function Monte Carlo) 
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X

f

h0|J†
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Valuable information can be obtained from the integral transform of the response function

Integral Transform Techniques



Integral Transform Techniques

E(�,q) R(!,q)

Current solution for the quasielastic region: Maximum Entropy Techniques 

A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502 
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Inverting the integral transform is a complicated problem
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We are now exploring new strategies, based on machine learning techniques, to improve the 
accuracy of the inversion and to better estimate the associated uncertainties



 Nuclear responses obtained with QMC techniques (more in detail Greens’ Function Monte Carlo) 

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

E↵�(�,q) =

Z
d!K(�,!)R↵�(!,q) = h 0|J†

↵(q)K(�, H � E0)J�(q)| 0i

Valuable information can be obtained from the integral transform of the response function

Integral Transform Techniques



Integral Transform Techniques
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✐ C. Barbieri, NR, and V. Somà, arXiv:1907.01122
 

• 40Ar(e,e’) and 48Ti(e,e’) cross sections w-w/o FSI 


Predicting Argon cross sections
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• The band comes from a first estimate of the uncertainty on the spectral function calculation 
obtained by varying the model-space and the harmonic oscillator frequency 
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• Charge current and neutral current 𝜈µ scattering 
on 12C and Ar for E𝜈µ =1 GeV



Global Fermi gas: independent particles

2

The basic concept of the FermiThe basic concept of the Fermi--gas modelgas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly 
interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli
exclusion principle !!!!
• Simple picture of the nucleus:
— Protons and neutrons are considered as moving freely within the nuclear volume. 
The binding potential is generated by all nucleons
— In a first approximation, these nuclear potential wells are considered as
rectangular: it is constant inside the nucleus and stops sharply at its edge 
— Neutrons and protons are distinguishable fermions and are therefore situated in 
two separate potential wells

— Each energy state can be ocupied by two
nucleons with different spin projections
— All available energy states are filled by 
the pairs of nucleons !!!! no free states , no 
transitions between the states
— The energy of the highest occupied state 
is the Fermi energy EF

— The difference B‘ between the top of the well and the Fermi level is constant for 
most nuclei and is just the average binding energy per nucleon B‘/A = 7–8 MeV.

 Simple picture of the nucleus: only 
statistical correlations are retained 
(Pauli exclusion principle)

 Protons and neutrons are considered as 
moving freely within the nuclear volume

 The energy of the highest occupied 
state is the Fermi energy:  EF , B’ 
constant binding energy
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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section
per neutron, d2σ

dTµd cos θµ
, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.
The flux-integrated CCQE total cross section, ob-

tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429× 10−39 cm2. The total normalization
error on this measurement is 10.7%.
The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2

QE
, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.
In addition to the experimental result, Figure 14 also

shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged

✐ MiniBooNE collaboration, PRD 81 (2010) 092005

 The Global Fermi gas model has been widely used 
in comparisons of neutrino scattering data. 

MiniBooNE data analysis requires MA~1.35 GeV to 
reproduce the data: incompatible with former 
measurements in bubble chamber: MA~1.03 GeV

Nuclear effects can explain the axial mass puzzle

 33



The Spectral Function of finite nuclei

•  Correlated Basis Function: the SF obtained within CBF and using the Local Density 
Approximation 

PLDA(k, E) = PMF (k, E) + Pcorr(k, E)

X

n

Zn|�n(k)|2Fn(E � En)
✐ O. Benhar et al, Nucl. Phys. A505, 267 (1989)  

Two different many-body methods to compute the spectral function of finite nuclei

Z
d3rPNM

corr (k, E; ⇢ = ⇢A(r))

•  Self Consistent Green’s Function : ab-initio method, the SF obtained 
solving the Dyson Equation for the corresponding propagator

+
⌃⇤(E)G0(E)G(E) =

Results currently available are for electron and neutrino scattering on:

4He, 12C, 16O within the CBF

 12C, 16O, Ca,Ti and Ar within the SCGF

✐ V. Somà et al, PRC87 (2013) no.1, 011303
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FIG. 1. Momentum distributions associated with the hole SF (nh(k)), the mean-field component

of the hole SF (n1h
h (k)), the free Fermi gas at kF = 225 MeV (nFG(k)), and the VMC results of [?

] (nVMC

h (k)).

e↵ect of FSI. Following Ref. [? ], we consider the real part of the optical potential U derived

from the Dirac phenomenological fit of Ref. [? ] to describe the propagation of the knocked-

out particle in the mean-field generated by the spectator system. This potential, given as a

function of the kinetic energy of the nucleon tkin(p) =
p
p2 +m2 �m, modifies the energy

spectrum of the struck nucleon as

ẽ(k+ q) = e(k+ q) + U (tkin(k+ q)) . (20)

The multiple scatterings that the struck particle undergoes during its propagation through

the nuclear medium are taken into account through a convolution scheme. The IA responses

are folded with the function fk+q, normalized as

Z
+1

�1
d!fk+q(!) = 1 . (21)

The one-body hadron tensor then reads
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The folding function is computed within a generalization of the Glauber theory [? ]
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• High energy and momentum correlated pairs

PFG(k, E) = �(E � ✏B)✓(pF � |k|)

Fermi gas contribution

Realistic SF: 80% shell model 
picture, 20% SRC

• Within the Fermi Gas model we can define the SF as:

• VMC: exact calculation of the momentum 
distribution including SRC pairs

• CBF: calculation 

• 1h corresponds to the MF, rapidly drops 

• FG: unrealistic momentum distribution, totally 
missing the high momentum component

The CBF Spectral Function of finite nuclei



Realistic local, configuration-space potential are controlled by thousands np and pp scattering 
data below 350 MeV of the Nijmegen and Granada databases

Two-body (phenomenological) potential 

⇡
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�

Some of the Feynman diagrams effectively included in the Argonne potential

N N

N N

N N

N N

N N

N N

Nuclear potentials are strongly spin-isospin dependent. Argonne v18 can be written as

• Static part

• Spin-orbit

v18(rij) = v
�
ij + v

⇡
ij + v

I
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18X
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p(rij)O
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ij
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O
p=7�8
ij = Lij · Sij ⌦ (1, ⌧ij)


