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INTRODUCTION:	THE	BASICS



Stellar	death:	a	core	collapse	supernova

Credit: Lucy Reading-Ikkanda/Quanta Magazine

Advanced	stellar	
evolution

Loss	of	pressure;	free	
fall;	core	formation

time

Falling	matter	
bounces;	shockwave;
Cooling	via	neutrinos

Star	explodes

Neutrino	burst,	~ 10	s



The	only	detection:	SN1987A	

• in	the	Large	Magellanic Cloud, D=51.4	kpc
• Detected	at	O(1)	Kt water/scintillator		detectors

Bionta et	al.,	PRL	58,1987,	Hirata	et	al.,	PRL	58,1987,	Alekseev	et	al.	JETP	Lett.	45	(1987)		
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Fig. 2. The observed energy spectra of events at K2 and IMB, as in Fig. 1, compared
with the predicted spectra in the points of minimum χ2 for K2 only, IMB only and
combined K2 and IMB data sets. The values of the parameters in these points are
given in Table 1.

3.3 Combined analysis: results

Comparing the neutrino spectra favored by K2 and by IMB separately, one
infers that a good combined fit exists. The key to see this is to observe that
the average energy favored by IMB is similar to that of the hard component
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Figure: CL, Astropart.Phys. 26 (2006) 190-201
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The	neutrinosphere
• Neutrinos	thermalized in	ultra-
dense	matter
• Surface	emission	
• Fermi-Dirac	spectrum,	E		~	10-15	MeV

• Neutrino	cooling	of	proto-neutron	
star	is	most	efficient
• gravitational	binding	energy:	
Ln ~	G	M2

f/Rf – G	M2
i/Ri ~	3	1053 ergs						

(Rf ~	10	Km)

• Cooling	timescale	~ neutrino	
diffusion	time
• Time	~	(size2)/(mean	free	path)	~	10	s

A collaboration of all fundamental forces
Gravity )

Nuclear forces )

Neutrino push ) Hydrodynamics )

(Crab nebula, SN seen in 1054)
Figure:	Amol	Dighe,	talk	at	WHEPP	XV,	2017



The	future:	learning	more	in-depth

Theory	has	reached	a	new	level	of	detail

We	need	new	data	to	test	the	theory…When?	What?



Within	our	lifetime….	
Guaranteed:	
multiple	SNe,	(quasi-)diffuse	flux

Possible:	
single,	galactic	SN	burst

Exceptional:	
single,	near-Earth	
SN	burst

Credit:	ESA/Hubble,	NASA

SmithsonianScience.org

Credit:	Anglo-Australian	observatory



GUARANTEED:	(QUASI-)DIFFUSE	FLUX



Diffuse	Supernova	Neutrino	Background	(DSNB)
• Whole	sky	flux;	constant	in	time

For	quasi-diffuse,	see	Kistler et	al.,	PRD	83,	2008;
CL	&	Yang,	PRD84	(2011)

Bisnovatyi-Kogan &	Seidov,	Sov.	Ast.	26	1982,	
Krauss,	Glashow	and	Schramm,	Nature	310	(1984)
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Detectable	within	the	next	decade
• Main	channel:	

• Sensitivity	is	background-limited

• Under	construction:																																			
• SuperK-Gd (50	kt),	specific	design	
for	DSNB
• Water	+	Gadolinium,	for	n-
tagging	

• JUNO (Jiangmen	Underground	Neutrino	
Observatory	)	(17	kt)
• Liquid	scintillator

• detection	will	change	from	
exceptional	to	routine!

p̄ = 0.68

⌫̄e

⌫̄e ⌫̄e +p ! n + e+

Ke+ = E⌫ � 1.806 MeV .

dN

dE⌫
= feff�(E⌫)�⌫(E⌫)Np ,

feff  1 p

�⌫(E⌫)

�� �� �� ���

�

�

�

�

�

�

����/���
��
��
��
��
��
��

����

Figure:	A.	Priya and	CL,	JCAP	1711	(2017)	no.11,	031

JUNO,	10	years
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M = 200 kt yr
p̄ = 0.68

⌫̄e ⇠

Beacom and	Vagins,	PRL93,	2004
Xu	et	al.,	J.	Phys:	Conf.	Ser.	718	(2016)	
An	et	al.,	J.	Phys.	G:	Nucl.Part.	Phys.	43	(2016)	030401.	



Unique	potential
• Strong	cosmological
component
• Core	collapse	at	high	
redshift?	

• evolution	of	SN	rate	(z-
dependence)

• Gives	image	of	the	whole
SN	population
• Was	SN1987A	typical	or	
exceptional?	

• Diversity	of	core	collapses	
(ONeMg cores,	black	hole	
formation,	…)
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Neutrinos	from	a	failed	supernova
• Failed	supernovae	are	brighter in	neutrinos

• Direct	collapse	into	black	hole,	no	explosion
• Higher	luminosity,	hotter	spectrum
• Can	dominate	the	DSNB	flux	if	more	than	~30%	of	all	collapses

M=40M⊙

BHFC
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Simulation	by	Garching	group,	2013.

Black:	exploding	SN,	11.2	Msun	prog.;	
Color:	failed	SN,	40	Msun	prog.
dashed,	solid,	dot-dashed:	νe,	ν	̄e	and	νx	

Figures	from	A.	Priya and	CL,	JCAP	1711	(2017)	no.11,	031

B Appendix: parameter dependence of the DSNB

In this Appendix details are given on the variation of the DSNB with the input parameters.

In Fig. 8 we show the diffuse ⌫̄e flux, for different survival probabilities p̄, and different
scenarios of dependence of BH formation on the star’s progenitor mass, M (see Sec. 2.1 and
Fig. 1). A fixed core collapse rate is assumed, RCC(0) = 1.25⇥ 10�4yr�1Mpc�3 [18].

fBH=0.27
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Figure 8: The diffuse fluxes for different scenarios in Fig. 1 (labeled by the corresponding
fraction of BHFC), assuming a fixed star formation rate, Rcc(0) = 1.25 ⇥10�4yr�1Mpc�3.
Note that these results refer to the redshift bin z < zmax = 2 (see Sec. 3).

The figure exhibits a number of expected features of the DSNB: a peak at E ⇠ 5 MeV,
where � ⇠ 1 cm�2s�1MeV�1, with an approximately exponential decline at higher energies.
The contribution of NSFC is always dominant near the peak energy, while the flux due to

– 22 –

See	also:	CL,	PRL	102	(2009);	
Lien	et	al.,	PRD81	(2010);	
Keehn &	CL,	PRD85	(2012);		
Mathews	et	al.,	arXiv:1405.0458
Horiuchi et	al.,	MNRSAS 475 (2018) 1, 1363-1374
Moller,	Suliga,	Tamborra and	Denton,	JCAP 05 (2018) 066



Multi-messenger:	stochastic	GW	background

• Orders	of	magnitude	
uncertainty
• Possible	low	frequency	
component	(SASI?)

• Failed	SNe :	black	hole	ringdown
• Sensitivity	to	extensions	of	
general	relativity

• Might	be	detectable	at	next	
generation	GW	observatories

• Interplay	with	neutrinos?	

3

complete physical description of the process are yet to be
conducted. Past simulations have primarily been in two
dimensions [75]; although some are three-dimensional,
these simulations typically use a coarser physical descrip-
tion [74]. In [43, 83], it was shown that the following
functional form could describe the GW amplitude spec-
tra h̃(fe) emitted during the core collapse process (in the
local frame of the star):

fe|h̃(fe)| =
G

⇡c4D
E⌫hqi

✓
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fe
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◆
3

e�fe/b, (7)

where a and b are free parameters of the model, D is
the distance to the star (assumed small enough that red-
shifting e↵ects can be ignored), E⌫ is the energy carried
away by neutrinos during the core collapse and hqi is the
luminosity-weighted averaged neutrino anisotropy [83].

The GW energy spectrum from a single core collapse
event can then be computed as:
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Inserting this spectrum into Eq. 5, we obtain the ex-
plicit form of the SGWB spectrum:
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where ⇠ is a combination of unknown scaling factors, de-
fined as

⇠ =
G�

CC

c5
E2

⌫hqi2 (10)

In anticipation of the low-frequency peak which is dis-
cussed and modeled below, we will refer to this as the
high-frequency model. Figure 1 shows examples of spec-
tra generated with this model. See the caption for dis-
cussion of the e↵ect of the choice of model parameters on
the morphology of the spectrum.

Figure 1 also shows the SGWB sensitivities of the Ad-
vanced LIGO [100] and Einstein Telescope [67] detectors,
assuming the detection statistic defined by [101] for which
the signal to noise ratio is defined as:
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where T is the observation time (set to 1 year in our case),
�(f) is the overlap reduction function for the chosen de-
tector pair (set to 1, assuming colocated detector pairs)
arising from the di↵erent locations and orientations of

FIG. 1: ⌦GW(f) for various parameter choices for the high-
frequency model of an SGWB produced by stellar core-
collapse. a and b are in units of Hz, while ⇠ has units of m2/s.
Overall, this model has three free parameters: a, b, and ⇠. In
general, the GW energy density increases as a decreases; at
frequencies above a few Hz, it essentially scales proportionally
to a�6. As b increases, the rate at which the exponential term
in Eq. 9 suppresses the GW energy density is decreased; this
leads to an increase in the overall energy density and pushes
the peak of the distribution to higher frequencies. Finally, the
GW energy density scales proportionally to ⇠. The e↵ect of
each parameter on the spectrum is further illustrated in Fig-
ure 2. Also shown are the SNR = 2 sensitivities of Advanced
LIGO [100] and ET [67], assuming 1 year of exposure and two
colocated detectors.

the detectors [101], and P
1

(f) and P
2

(f) are the strain
power spectral densities of the two detectors. In Figure
1, we plot the SNR = 2 curves.

In Figure 2, we show the e↵ect of a and b on the spec-
trum by plotting ⌦

GW

/⇠ at 100 Hz as a function of these
parameters. For a fixed value of b, increasing a leads to
decreased ⌦

GW

; this is apparent from the fact that ⌦
GW

goes approximately as a�6 (see Eq. 9). The converse is
true for a: fixing a and allowing b to grow leads to higher
⌦

GW

, since increasing b pushes the exponential term in
Eq. 9 closer to 1.

Similar results were found in [43] and [102]. In [43],
two modes of star formation were considered: a normal
mode of star formation as considered here, and several
possibilities for an additional population of massive stars
(Population III) which were deemed necessary as initial
reports of the optical depth were quite high. Using a =
200 and b = 300, they found a peak value of ⌦

GW

h2 = 3�
4⇥ 10�10 at f ⇡ 300 Hz. In general, the massive modes
made a relatively small contribution (no more than a
factor of 30) at lower frequencies (f < 100 Hz). Above
300 Hz, all models were indistinguishable. More recently,
using the same SFR considered here, Ref. [102] compared
di↵erent models of black hole formation from single star
collapse and mergers. Single star collapse also showed

High	
frequency

Low
frequency

Adapted from K. Crocker et al., PRD95 (2017) no.6, 063015

Buonanno et al., PRD72 (2005) 084001, 
K. Crocker et al., PRD92 (2015) no.6, 063005, 
K. Crocker et al., PRD95 (2017) no.6, 063015
Du, PRD 99, 044057 (2019)



POSSIBLE:	GALACTIC	SUPERNOVA



Proto-neutron	star	(PNS)	evolution
• Direct	narrative	of	events	at	R	<	200	Km

Figure	from	Roberts	and	Reddy,	Handbook	of	Supernovae,	Springer	Intl.,	2017

Neutronization:	e- +	p	à n		+	νe

accretion Surface	emission Volume	emission

nuclear	burning/
Volume	emission



Accretion:	Standing Accretion Shock Instability	(SASI)

• Stalled	shock	wave
• Deformation,	sloshing	of	shock	
front	
• Fluctuating	ν emission	rate

• Strong	in	3D	with	detailed	
neutrino	transport

Blondin,	Mezzacappa,	DeMarino,	ApJ.	584	
(2003);	Scheck	et	al.,	A&A.	477	(2008)

Tamborra et	al.,	arXiv:1307.7936
See	also Lund	et	al.,	PRD	82,	(2010),	PRD	86,		(2012)
Kuroda,	Kotake,	Hayama and	Takami,	ApJ,	851:62,		2017
Walk,	Tamborra,	Janka and	Summa,	PRD 98 (2018) 12, 123001,	PRD	100,	063018	(2019)

Figure from	Tamborra et	al.,	arXiv:1307.7936
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and Boltzmann equations [44, 45]. We employ state-of-
the-art neutrino interaction rates [24, 45] and relativistic
gravity and redshift corrections [44, 46].
The RbR+ description assumes the neutrino momen-

tum distribution to be axisymmetric around the radial
direction everywhere, implying that the neutrino fluxes
are radial. The detectable energy-dependent neutrino
emission from the hemisphere facing an observer is de-
termined with a post-processing procedure that includes
projection and limb-darkening effects [30]. We will use
the 27M⊙ model as our benchmark case because its prop-
erties have been published [15]. Details of the other two
simulations will be provided elsewhere [47]. All simula-
tions used artificial random density perturbations of 0.1%
amplitude on the whole numerical grid to seed the growth
of hydrodynamic instabilities. None of the models had
exploded at the end of the computation runs.
Detector signal.—In the largest operating detectors,

IceCube and Super-K, neutrinos are primarily detected
by inverse beta decay, ν̄e+p → n+e+, through Cherenkov
radiation of the positron. We represent the neutrino
emission spectra in the form of Gamma distributions
[48, 49]. We estimate the neutrino signal following the
IceCube Collaboration [37], accounting for a ∼13% dead-
time effect for background reduction. We use a cross sec-
tion that includes recoil effects and other corrections [50],
overall reducing the detection rate by 30% relative to ear-
lier studies [20, 21, 51]. On the other hand, we increase
the rate by 6% to account for detection channels other
than inverse beta decay [37].
We assume an average background of 0.286 ms−1 for

each of the 5160 optical modules, i.e., an overall back-
ground rate of Rbkgd = 1.48× 103 ms−1, comparable to
the signal rate for a SN at 10 kpc. The IceCube data ac-
quisition system has been upgraded since the publication
of Ref. [37] so that the full neutrino time sequence will
be available instead of time bins.
IceCube will register in total around 106 events above

background for a SN at 10 kpc, to be compared with
around 104 events for Super-K (fiducial mass 32 kton),
i.e., IceCube has superior statistics. On the other hand,
the future Hyper-K will have a fiducial mass of 740 kton,
providing a background-free signal of roughly 1/3 the Ice-
Cube rate. Therefore, Hyper-K can have superior signal
statistics, depending on SN distance. In addition, it has
event-by-event energy information which we do not use
for our simple comparison.
Signal modulation in the 27M⊙ model.—To get a first

impression of the neutrino signal modulation we consider
our published 27M⊙ model [15], meanwhile simulated
until ∼550 ms. This model shows clear SASI activity at
120–260ms. At ∼220ms a SASI spiral mode sets in and
remains largely confined to an almost stable plane, which
is not aligned with the polar grid of the simulation. We
select an observer in this plane in a favorable direction
and show the expected IceCube signal in the top panel
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FIG. 1: Detection rate for our 27 M⊙ SN progenitor, upper
panels for IceCube, bottom one for Hyper-K. The observer
direction is chosen for strong signal modulation, except for
the second panel (minimal modulation). Upper two panels:
IceCube rate at 10 kpc for ν̄e (no flavor conversion) and for
ν̄x (complete flavor conversion). The lower two panels include
a random shot-noise realization, 5ms bins, for the indicated
SN distances. For IceCube also the background fluctuations
without a SN signal are shown.

of Fig. 1. One case assumes the signal to be caused by
anti-neutrinos emitted as ν̄e at the source, i.e., we ignore
flavor conversions. The other case takes into account
complete flavor conversion so that the signal is caused by
ν̄x, i.e., a combination of ν̄µ and ν̄τ . Both cases reveal
large signal modulations with a clear periodicity.
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multi-messenger:	neutrinos	and	GW
• SASI	signature	in	gravitational	waves,	potentially	observable

• Multi-messenger	analysis	can	enhance	sensitivity
• Phase	shift	due	to	distance	between	nu-sphere	and	PNS	surface

– 15 –

is Rν̄e ∼ 37 km and the PNS core surface is RPNS ∼ 15 km (at Tpb = 200 ms for S15.0(SFHx)),

then the correlation distance is Rcor = Rν̄e − RPNS ∼ 20 km. An angle-average accretion velocity

at R = 40(20) km is Vadv ∼ −1 × 108(−1 × 107) cm s−1 at Tpb = 200 ms, leading to ∆T of a few

10 ms.

In order to estimate the correlation between the neutrino and GW signal more quantitatively,

we evaluate the correlation function X(t,∆T ) in Figures 9 and 10. Note Figures 9 and 10 are for

S15.0(SFHx) and S11.2(SFHx) showing highest and invisible SASI activity in this work, respec-

tively.

Fig. 9.— Top panels show the GW amplitude (blue line) either + (left panel) or × polarization

(right panel) and the neutrino event rate (black and red lines) in arbitrary units for S15.0(SFHx).

For the red line, the monotonically time-changing component of the black line is subtracted (Tpb !

170 ms) in order to focus on the SASI-induced modulation. Same as the top panels, middle panels

(b+/×) show the correlation function X(t,∆T ) between the GW amplitude (blue line (top)) and

the event rate (red line (top)) with several time delay ∆T (see text for definition) which is indicated

in the upper left part as 0, 4, 8, 12, 16, 20, 24 [ms]. Bottom panels (c+/×) show ∆Tmax that gives

the delay-time with the maximum correlation in the middle panels. Note when we obtain ∆Tmax,

we set an arbitral threshold as |X(t,∆T )| ≥ 0.7 not to extract insignificant values.

The top panel of Figure 9 shows the GW amplitude (blue line) and the neutrino event rate

(black and red lines) in arbitrary units. In order to focus on the SASI-induced modulation, the

red curve is the event rate after the monotonicaly time-changing component is subtracted from the

original curve (black line)4.

4 As one can see from the red line in each top panel in Fig. 6, the neutrino event rate for 0 ! Tpb ! 150

ms is approximately fitted by a linear function (as a function of postbounce time) with positive slope, whereas it

– 14 –

to see impacts of the EOS and the progenitor. A pronounced peak is seen around ∼ 120 Hz in

S15.0(SFHx) (red line), which is absent for other S15.0 models with weak SASI activity (green

and blue lines). This is again consistent with Tamborra et al. (2013, 2014b). The absence of the

SASI signature of the 11.2 M⊙ model is in line with Tamborra et al. (2013). S40.0(SFHx) that

has a relatively high compactness parameter (Table 1) exhibits a SASI activity and shows a peak

at F ∼ 160 Hz. In addition to the biggest peak, some secondary peaks are also seen on the black

line as well as in other models, e.g., at F ∼ 60 Hz on the red line. In Tamborra et al. (2013),

these secondary peaks are hard to see in most of the employed progenitors except for the 20M⊙

model. We consider that this difference might be partially due to our simplified transport scheme,

where the neutrino matter coupling is controlled via several parameters (see Kuroda et al. (2012)

for more details). Because of this, our neutrino signals may change more sensitively in response to

the matter motion compared to those obtained in CCSN models with more sophisticated neutrino

transport. For example, during the prompt convection phase (Tpb ! 50ms), our neutrino event

rate shows an oscillatory behavior (see red/green line in every top panel in Fig. 6) which is not

seen in Tamborra et al. (2013). To clarify this, we need to perform 3D-GR simulations with more

elaborate neutrino transport scheme which is, unfortunately, computationally unaffordable at this

stage.

Fig. 8.— Schematic drawing to illustrate the different radial positions of SASI-induced neutrino and

GW emission in the postbounce core. Below the stalled shock (dashed blue line, labeled as “The

stalled shock”), non-spherical flows (dashed red line with arrow) hit first the (average) neutrino

sphere then penetrates into the PNS core surface. Rcor represents the distance between the neutrino

sphere (ν̄e in this case) and the PNS. Vadv is the typical velocity of the downflows there.

From Figures 6 and 7, it has been shown that both of the SASI modulation frequency of the

GW and neutrino signals is relatively close (i.e., in the range of 100 ∼ 200 Hz). Figure 8 illustrates

how the two signals could be spatially correlated. In the figure, the SASI flows (red dashed arrows)

advecting from the shock first excite oscillation in the neutrino signal at the (average) neutrino

sphere. Afterward, it reaches to the PNS core surface (the blue thick arrows), leading to the

modulation in the GW signal (see also Kuroda et al. (2016a) for the detailed analysis). We can

roughly estimate the time delay ∆T as follows. The radius of anti-electron type neutrino sphere

Kuroda,	Kotake,	Hayama and	Takami,	ApJ,	851:62,		2017	



Oscillations:	unique interplay	of	frequencies

• Kinetic
• ν-e	potential
• ν-ν potential

!ij = �m2
ij/2E

Neutrino)oscilla.ons)
Star 

vacuum Earth 

•  Ma0er)effects:))
–  refrac.on)frequency)≈)vacuum)frequency)
– Neutrino9neutrino,)neutrino9electron)sca0ering)

N
eu

tri
no

-n
eu

tri
no

 

�
hi

gh
�
 M

S
W

 

�
lo

w
�
 (s

ol
ar

) M
S

W
 

�
lo

w
�
 (s

ol
ar

) M
S

W
 103 g cm-3 10 g cm-3 108 g cm-3 

Unique)of)
supernovae)
Unique'of'

supernovae!'� =
p
2GFne / R�3

µ '
p
2GFne↵

⌫ / R�4

µ � � !31 ' � !21 ' �

Wolfenstein,	PRD	17	1978,	Mikheyev &	Smirnov,	Yad.	Fiz.	42,	1985
See	also:	Dighe &	Smirnov,	Phys.Rev.	D62	(2000)



Vacuum	+	matter	+	self-interaction

• Nu-nu	interaction	:	non-linear,	collective	effects
• Spectral	splits/swaps,	no	general	solution	

HE = Hvac
E + Hm

E + H⌫⌫
E

θ angle	between	
incident	momenta

Hvac
E = U diag

⇣
�!21

2

,+
!21

2

,!31

⌘
U† ,

Hm
=

p
2GF diag(Ne, 0, 0)

H⌫⌫
E =

p
2GF

Z
dE0

(⇢E0 � ⇢̄E0
)(1� cos ✓)

�m2
31 > 0 normal hierarchy,NH

�m2
31 < 0 inverted hierarchy, IH

Seminal works:	Duan,	Fuller	&	Qian,	PRD74	(2006),	Duan	et	al.,	PRD74	(2006)

See	talk	by	A.	
Mirizzi at	
Neutrino2020



Time-dependent	pattern
• Potential	to	disentangle	different	oscillation	mechanisms

Matter-driven,	
MSW

Collective	
effects

Oscillation
Signatures	suppressed
(similar	flavor	spectra)

See,	e	g.,	Horiuchi and	Kneller,
J.Phys.	G45	(2018)	no.4,	043002



Robust	oscillation	signatures
• Distinguishable	from	stellar	physics	effects

Suppression	of	νe neutronization peak	
due	to	θ13-driven	MSW	resonance,
For	Normal	mass	hierarchy

Figure	from	K.	Scholberg,	J.Phys.	G45	(2018)	no.1



Spectral	splits	due	to	collective	effects

Electron	flavor	re-generation	inside	the	Earth;	
sensitive	to	spectral	difference	of	states	
in	the	θ12-driven	MSW	resonance		

Figure from Chakraborty and Mirizzi, 
PRD90 (2014) no.3, 033004

Figure from Borriello et al., PRD86	(2012)	083004



EXCEPTIONAL:	NEAR-EARTH	SUPERNOVA



Pre-supernova	neutrinos
• Last	stages	of	fusion	chain

• rapid	evolution	of	isotopic	
composition

• increase	of	core	density,	
temperature

• increase	of	neutrino	emission
• detectable!	

A.	C.	Phillips,	The	Physics	of	Stars,	2nd	Edition (Wiley,	1999)

Odrzywolek,	Misiaszek,	and	Kutschera,	
Astropart.	Phys.	21,	303	(2004)

Itoh,	Hayashi,	Nishikawa and Kohyama,	1996,	ApJS,	102,	411	
Kato,	Azari,	Yamada,	et	al.	2015,	ApJ,	808,	168
Kato,	Yamada,	Nagakura,	et	al.	2017,	arXiv:1704.05480
Simpson et	al.,	Astrophys.J. 885 (2019) 133
Guo	et	al.,		PLB 796 (2019)
Kato,	Hirai	and	Nagakura,	arxiv:2005.03124
Li	et	al.	JCAP 05 (2020) 049
Mukhopadhyay,	CL,	Timmes	and	Zuber,	2004.02045
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t4 0	hrs

t3 -1	hr
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t1 -12 hrs

spectacular	signal	for	Betelgeuse	(D=200	pc),	in	~6	hrs:
~	50	events	at	DUNE	
~	800	events	at	HyperK (E>4.5	MeV)	
>	2000	events	at	JUNO	

K	.M.	Patton.	CL,	R.	Farmer	and	F.	X.	Timmes,	ApJ	851	(2017)	no.1,	6



HIGHLIGHT

Neutrino	signatures	of	Standing	Accretion	
Shock	Instability	(SASI)

Zidu Lin,	CL,	M.	Zanolin,	K.	Kotake and	C.	Richardson,	PRD	101,	123028	(2020)



SASI	or	no-SASI?	
• SASI	or	statistical	fluctuations?	

2

and Boltzmann equations [44, 45]. We employ state-of-
the-art neutrino interaction rates [24, 45] and relativistic
gravity and redshift corrections [44, 46].
The RbR+ description assumes the neutrino momen-

tum distribution to be axisymmetric around the radial
direction everywhere, implying that the neutrino fluxes
are radial. The detectable energy-dependent neutrino
emission from the hemisphere facing an observer is de-
termined with a post-processing procedure that includes
projection and limb-darkening effects [30]. We will use
the 27M⊙ model as our benchmark case because its prop-
erties have been published [15]. Details of the other two
simulations will be provided elsewhere [47]. All simula-
tions used artificial random density perturbations of 0.1%
amplitude on the whole numerical grid to seed the growth
of hydrodynamic instabilities. None of the models had
exploded at the end of the computation runs.
Detector signal.—In the largest operating detectors,

IceCube and Super-K, neutrinos are primarily detected
by inverse beta decay, ν̄e+p → n+e+, through Cherenkov
radiation of the positron. We represent the neutrino
emission spectra in the form of Gamma distributions
[48, 49]. We estimate the neutrino signal following the
IceCube Collaboration [37], accounting for a ∼13% dead-
time effect for background reduction. We use a cross sec-
tion that includes recoil effects and other corrections [50],
overall reducing the detection rate by 30% relative to ear-
lier studies [20, 21, 51]. On the other hand, we increase
the rate by 6% to account for detection channels other
than inverse beta decay [37].
We assume an average background of 0.286 ms−1 for

each of the 5160 optical modules, i.e., an overall back-
ground rate of Rbkgd = 1.48× 103 ms−1, comparable to
the signal rate for a SN at 10 kpc. The IceCube data ac-
quisition system has been upgraded since the publication
of Ref. [37] so that the full neutrino time sequence will
be available instead of time bins.
IceCube will register in total around 106 events above

background for a SN at 10 kpc, to be compared with
around 104 events for Super-K (fiducial mass 32 kton),
i.e., IceCube has superior statistics. On the other hand,
the future Hyper-K will have a fiducial mass of 740 kton,
providing a background-free signal of roughly 1/3 the Ice-
Cube rate. Therefore, Hyper-K can have superior signal
statistics, depending on SN distance. In addition, it has
event-by-event energy information which we do not use
for our simple comparison.
Signal modulation in the 27M⊙ model.—To get a first

impression of the neutrino signal modulation we consider
our published 27M⊙ model [15], meanwhile simulated
until ∼550 ms. This model shows clear SASI activity at
120–260ms. At ∼220ms a SASI spiral mode sets in and
remains largely confined to an almost stable plane, which
is not aligned with the polar grid of the simulation. We
select an observer in this plane in a favorable direction
and show the expected IceCube signal in the top panel

!""

#""

$""

%""

&""

'""

(""

 )

 *

!'+,-./01)2.3)

4
56
)+
78
- 
9 :

!""

#""

$""

%""

&""

'""

(""

 )

 *

+,)-./)

0
12
)3
45
6 
7 8

0

1000

2000

3000

4000

 e

10 kpc

 e 20 kpc

Background

C
ou

nt
s/

bi
n

IceCube

! "!! #!! $!! %!! &!!!

#!!

%!!

'!!

(!!

"!!!

"#!!

 )

"!*+,-

 ) #!*+,-

./,)0 1

234)*5467

8
9:
;<
6=
>3
;

FIG. 1: Detection rate for our 27 M⊙ SN progenitor, upper
panels for IceCube, bottom one for Hyper-K. The observer
direction is chosen for strong signal modulation, except for
the second panel (minimal modulation). Upper two panels:
IceCube rate at 10 kpc for ν̄e (no flavor conversion) and for
ν̄x (complete flavor conversion). The lower two panels include
a random shot-noise realization, 5ms bins, for the indicated
SN distances. For IceCube also the background fluctuations
without a SN signal are shown.

of Fig. 1. One case assumes the signal to be caused by
anti-neutrinos emitted as ν̄e at the source, i.e., we ignore
flavor conversions. The other case takes into account
complete flavor conversion so that the signal is caused by
ν̄x, i.e., a combination of ν̄µ and ν̄τ . Both cases reveal
large signal modulations with a clear periodicity.

Figure from	Tamborra et	al.,	arXiv:1307.7936
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total number of events, and N

ev

& 2500 in all the cases
examined here (we also assume that systematic uncer-
tainties on n are negligible, because background rates
can be measured precisely over years of data-taking).

With regard to t0 and ⌧ , here they are fixed to be
t0 = 155 ms post-bounce, and ⌧ = 55 ms, consistently
with the KKHT simulation results (fig. 1). Fixing these
quantities is legitimate in the spirit of answering the ques-
tion whether there is indication of single-frequency fluc-
tuations in a signal between two chosen (generic) instants
of time. Realistically, in the context of a more specific
search for SASI e↵ects, t0 and ⌧ could be at first set using
rough estimations from visual inspections of the data, in
conjunction with expectations from the theory. Indeed,
a delay in the onset of SASI (relative to the bounce time)
is expected considering that SASI requires the shockwave
to come to a stalling point. We checked that 3D numeri-
cal simulations roughly place t0 in the interval ⇠ 0.1�0.4
s post-bounce [16, 36, 42–44], with ⌧ being even more un-
certain. It is possible that, by the time the next galactic
supernova is observed, theoretical progress will be able to
place stronger priors on t0 and ⌧ . The method proposed
here will be applicable to data with externally-estimated
(not optimized) t0 and ⌧ ; the lack of optimization of
these parameters will result in certain loss of power of
the method, which can be overcome by generalizing the
method to include ⌧ and t0 as fit parameters.

B. Time series and power spectrum

Let us consider the events that are recorded in a de-
tector after an initial time t0, in time bins of width
� = 1 ms. The j-th time bin then corresponds to the
time t

j

= t0+ j�. The observed number of events in the
same bin will then be Ñ(t

j

), which is a random variable
fluctuating around its mean N(t

j

) ' R(t
j

)�.
Following [21, 26], we perform a discrete Fourier trans-

form of the time series {Ñ(t
j

)} over the time interval
[t0, t0 + ⌧ ], containing N

bins

= ⌧/� time bins. The dis-
crete frequency resolution is then:

� =
1

⌧

, (3)

which represents the minimum width of frequency bins
for which statistical independence between adjacent bins
can be realized (see the discussion in Appendix A). For
our fiducial value ⌧ = 55 ms, the resolution is � =
18 Hz [52]. The Nyquist frequency becomes [41]

fNyq =
1

2�
, (4)

which corresponds to the frequency index

kNyq =
fNyq

�

=
⌧

2�
=

1

2
N

bins

. (5)

We define the discrete Fourier-transformed neutrino sig-
nal as:

h̃(k�) =
Nbins�1X

j=0

Ñ(t
j

)ei2⇡j�k�

, (6)

and the one-sided power spectrum, similarly to [41] as:

P̃ (k�) =

8
><

>:

2|h̃(k�)|2/N2
bins

for 0 < k� < f

Nyq

,

|h̃(k�)|2/N2
bins

for k� = 0

(7)

(here the identity (|h̃(k�)|2 + |h̃(�k�)|2) = 2|h̃(k�)| was
used).
The factor of 1/N2

bins

is included in order to fix the
normalization, so that at k = 0 we have P̃ (0) =

(Ñ
ev

/N

bins

)2 (here Ñ

ev

=
P

Nbins�1
j=0 Ñ(t

j

)).
Fig. 2 shows an illustration of the discretized time pro-

file, and the corresponding power spectra, for the KKHT
model, with and without SASI (as well as for the two
templates in Eqs. (1) and (2)). For the latter, the pa-
rameters have been fit to maximize the likelihood (see
eq. (10) in the following section) to best reproduce the
general features of the neutrino event rates predicted by
the KKHT model. The figure shows that, qualitatively,
the templates capture the main features of the realistic,
numerically calculated time and frequency profiles. An
exception is the peak at f ⇠ 60 Hz in the power spec-
trum of the no-SASI model, which is not reproduced by
the template. We checked that this peak is due to the
“wavy” structure at t ⇠ 180 � 200 ms in the numerical
model.

C. The SASI-meter

Let us now consider the series of power spectrum values
at the discrete frequencies k�, P (k�), and their statisti-
cal properties. Considering that (i) the probability that a
single neutrino interacts in the detector is very small, (ii)
event counts in di↵erent time bins are statistically inde-
pendent (see Sec. II), and (iii) N(t

j

) & 10 (large number
approximation), we conclude that the binomial distribu-
tion for N(t

j

) approaches a Gaussian distribution with
a variance proportional to the square root of the mean
number (Poisson process): s

2(t
j

) = N(t
j

). This implies
(see the proofs in Appendices A and B) that the real
part and imaginary part of the discrete Fourier trans-
form, h(k�) (Eq. (6)), are also Gaussian-distributed, and
the probability distribution of the power spectrum P̃ at
a given frequency is given by

Prob(P̃ ) =
N

2
bins

4�2
exp


�N

2
bins

4�2

⇣
P̃ + P

⌘�

⇥ I0

✓
N

2
bins

2�2

p
P̃P

◆
,

(8)



Constructing	a	SASI-meter:	possibilities…

SASI

No SASI

T. Kuroda, K. Kotake, K. Hayama, T. Takiwaki, arXiv:1708.05252

Zidu Lin,	CL,	M.	Zanolin,	K.	Kotake and	C.	Richardson,	PRD	101,	123028	(2020)



Templates,	time	domain	

� Simplified model which shows fundamental characteristics extracted from groups 
of models with SASI/without SASI

R(t) = (A−n)(1 +a*Sin(2π*f*t)) +n R(t) = A



� In Frequency domain

• In	frequency	domain	(discrete	Fourier	transform):



The	SASI-meter
• Test-statistics:	likelihood	ratio	in	frequency	space	

• Commonly	used	in	GW	community

5

FIG. 2: Neutrino event rate (left panels) and its power spectrum (right panels) at Hyper-K for distance D = 1 kpc. Shown as
solid black lines are a case where there is SASI (upper panes, from the KKHT model), and no SASI (lower panes, derived from
the KKHT model with smoothing, see text). We also show (solid, purple curves) the predictions of the 2-parameter template
(2P, Eq. (1)) and of the 0-parameter template (0P, Eq. (2)), for estimated best-fitting parameters (fS = 119.72 Hz, a = 0.049
and A = 6141.54, see Eq. (1) and Table I). The shaded (blue) bands characterize the probability density distributions with the
width of one standard deviation.

where I0 is the modified Bessel function of the first kind,
and

�

2 =
N

ev

2
.

(9)

The object of this study is to perform a hypothesis
test for the presence of SASI. There is evidence from nu-
merical simulations that the SASI only develops within
a certain range of frequencies from a few tens of Hz to
about 250 Hz [5, 25, 36, 45–47]. Therefore, we apply
a frequency cut, and restrict the analysis to the inter-
val from 54 Hz to 216 Hz. The corresponding range of
wavenumbers is k = 3, 4, 5, ..., 12. In addition to being
motivated by estimates of the SASI frequency, the cut
is instrumental to exclude a large peak at low frequency
due to the spectral leakage [41] from 0 Hz.

Let us now define the likelihood that a given observed
power series vector, P̃ = {P̃

k

} (i.e., the series of powers
for discrete wavenumbers k) is a realization of a certain
hypothesis, which can be described by a parametric tem-
plate. It is defined as:

L(P̃,⌦) =
12Y

k=3

Prob(P̃
k

, P

k

(⌦)) , (10)

where P
k

(⌦) is the power predicted by the template, and
⌦ indicates the set of parameters of the template.
Given two hypotheses (i.e., two templates) with pa-

rameters ⌦ and ⌦0, and a fixed observed set P̃, the like-
lihood ratio is:

L(P̃) =
Max⌦[L(P̃,⌦)]

Max⌦
0

[L(P̃,⌦0)]
. (11)

In the numerator (denominator), the first (second) hy-
pothesis is used and the likelihood is maximized with
respect to the parameters ⌦ (⌦0). In this work, the tem-
plates in Eqs. (1) and (2) will be used as representative
of the SASI and no-SASI cases. Their parameters are
⌦ = {a, f

S

} and ⌦0 = {Null} respectively.
It is intuitive to see how the likelihood ratio in Eq. (11)

is sensitive to SASI. Since our templates R2 (Eq. (1))
and R0 (Eq. (2)) capture well the main features of the
neutrino event rates of the models with and without SASI
respectively, as the SASI features in the data become
more pronounced, the numerator Eq. (11) is likely to
increase (generally better fit for the R2 template), while
at the same time the denominator is likely to decrease
(poorer fit for the R0 template), so L is likely to increase.

Fit	using	

Fit	using	

� Simplified model which shows fundamental characteristics extracted from groups 
of models with SASI/without SASI

R(t) = (A−n)(1 +a*Sin(2π*f*t)) +n R(t) = A

� Simplified model which shows fundamental characteristics extracted from groups 
of models with SASI/without SASI

R(t) = (A−n)(1 +a*Sin(2π*f*t)) +n R(t) = A

� These 2 simplified models are used as “ruler”to compare with detected signals

𝒫𝑘
Detected Power Spectrum

No SASI SASI

ℒ𝑛𝑜 𝑆𝐴𝑆𝐼

ℒ𝑆𝐴𝑆𝐼
This is our 
“SASImeter” !!
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FIG. 2: Neutrino event rate (left panels) and its power spectrum (right panels) at Hyper-K for distance D = 1 kpc. Shown as
solid black lines are a case where there is SASI (upper panes, from the KKHT model), and no SASI (lower panes, derived from
the KKHT model with smoothing, see text). We also show (solid, purple curves) the predictions of the 2-parameter template
(2P, Eq. (1)) and of the 0-parameter template (0P, Eq. (2)), for estimated best-fitting parameters (fS = 119.72 Hz, a = 0.049
and A = 6141.54, see Eq. (1) and Table I). The shaded (blue) bands characterize the probability density distributions with the
width of one standard deviation.

where I0 is the modified Bessel function of the first kind,
and

�

2 =
N

ev

2
.

(9)

The object of this study is to perform a hypothesis
test for the presence of SASI. There is evidence from nu-
merical simulations that the SASI only develops within
a certain range of frequencies from a few tens of Hz to
about 250 Hz [5, 25, 36, 45–47]. Therefore, we apply
a frequency cut, and restrict the analysis to the inter-
val from 54 Hz to 216 Hz. The corresponding range of
wavenumbers is k = 3, 4, 5, ..., 12. In addition to being
motivated by estimates of the SASI frequency, the cut
is instrumental to exclude a large peak at low frequency
due to the spectral leakage [41] from 0 Hz.

Let us now define the likelihood that a given observed
power series vector, P̃ = {P̃

k

} (i.e., the series of powers
for discrete wavenumbers k) is a realization of a certain
hypothesis, which can be described by a parametric tem-
plate. It is defined as:

L(P̃,⌦) =
12Y

k=3

Prob(P̃
k

, P

k

(⌦)) , (10)

where P
k

(⌦) is the power predicted by the template, and
⌦ indicates the set of parameters of the template.
Given two hypotheses (i.e., two templates) with pa-

rameters ⌦ and ⌦0, and a fixed observed set P̃, the like-
lihood ratio is:

L(P̃) =
Max⌦[L(P̃,⌦)]

Max⌦
0

[L(P̃,⌦0)]
. (11)

In the numerator (denominator), the first (second) hy-
pothesis is used and the likelihood is maximized with
respect to the parameters ⌦ (⌦0). In this work, the tem-
plates in Eqs. (1) and (2) will be used as representative
of the SASI and no-SASI cases. Their parameters are
⌦ = {a, f

S

} and ⌦0 = {Null} respectively.
It is intuitive to see how the likelihood ratio in Eq. (11)

is sensitive to SASI. Since our templates R2 (Eq. (1))
and R0 (Eq. (2)) capture well the main features of the
neutrino event rates of the models with and without SASI
respectively, as the SASI features in the data become
more pronounced, the numerator Eq. (11) is likely to
increase (generally better fit for the R2 template), while
at the same time the denominator is likely to decrease
(poorer fit for the R0 template), so L is likely to increase.

(frequency	cut:	54		Hz	<	f	<	216	Hz)



� Statistical fluctuation

Because of statistical 
fluctuations …..

the readings of our 
“SASImeter” is a 
distribution, rather than a 
number

• The	SASI-meter	is	“calibrated”	using	a	numerical	model:
• Statistical	distribution	of		 due	to	statistical	fluctuations	in	numbers	of	
events	in	each	bin

6

Vice-versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (11) serves
as our “SASI-meter” to identify the presence of SASI.

To assess the e↵ectiveness of the SASI-meter quantita-
tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This
was done by simulating (using a Monte Carlo method)
N

st

= 103 sets P̃ using the KKHT model with and with-
out SASI, so we will have L

S

⌘ L(P̃
SASI

) and L
nS

⌘
L(P̃

no�SASI

), and their probability density distributions,
Prob(L

S

) ' Prob(L|S) (where Prob(L|S) indicates the
“true” probability distribution, which would be obtained
in the limit N

st

! 1) and Prob(L
nS

) ' Prob(L|nS).
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that – under the two hypotheses – the likelihood
ratio exceeds a certain threshold value, ⇤:

P

D

=
R
L>⇤ Prob(L|S)dL , (12)

P

FI

=
R
L>⇤ Prob(L|nS)dL . (13)

⇤ usually represents a value of the likelihood ratio
above which the SASI hypothesis is accepted as true
(“detection”). Therefore, P

D

takes the meaning of SASI
detection probability, because it represents the probabil-
ity that the method accepts the SASI hypothesis as true
when the SASI is in fact true. P

FI

then represents the
false identification probability, i.e., the probability that
the SASI hypothesis is accepted when in fact the no-SASI
hypothesis is the true one.

The formalism discussed in this section becomes
clearer in light of the results we have obtained, which
are going to be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summa-
rized in fig. 3, for Hyper-K and IceCube, and for dif-
ferent distances to the supernova. For each detector and
distance, the figure shows the probability distributions of
lnL

S

and lnL
nS

.
We observe that, reflecting the expected sensitivity

of our SASI-meter, for short distances the two distribu-
tions are widely separated, with the distribution for the
SASI (no-SASI) case peaking at lower (higher) values of
the likelihood ratio [53]. The separation means that, if
the SASI hypothesis is true, there is a large probabil-
ity that the measured value of lnL will fall in a region
where the no-SASI hypothesis is strongly disfavored (i.e.,
Prob(L|nS) ⌧ Prob(L|S)). A similar argument holds if
the no-SASI hypothesis is true. We conclude, then, that
for a relatively close supernova (D ⇠ few kpc) the two
hypotheses are likely to be distinguished with high con-
fidence.

The separation between the two probability distribu-
tions decreases as D increases, until, for D ⇠ 10 kpc,

the SASI and no-SASI curves almost completely overlap,
meaning that the two hypotheses are very unlikely to be
distinguished. The dependence on the distance is due to
how the size of the the statistical fluctuations increases
with D, eventually overpowering the SASI, which there-
fore becomes invisible.
The trends shown in Fig. 3 are reflected in the behav-

ior of the detection and false identification probabilities,
P

D

and P

FI

(Eqs. (12) and (13)). These are described
by the Receiver Operating characteristic Curve (ROC).
The ROC is defined as the curve described in a plane
by the points (P

FI

(⇤), P
D

(⇤)), where ⇤ varies in the in-
terval [0,+1]. Fig. 4 shows the ROC for Hyper-K and
IceCube for several distances from the star. The plots
show the general features of the ROC: it passes by the
points (0, 0) and (1, 1) (corresponding to ⇤ ! +1 and
⇤ ! 0 respectively, see Eqs. (12) and (13)). Further-
more, the curve lies in the region P

D

> P

FI

, as expected
from Fig. 3. A high detectability potential corresponds
to a ROC where P

D

is as close as possible to 1 and at
the same time P

FI

is as close as possible to 0. For ex-
ample, for IceCube and D = 5 kpc, the ROC passes
by the point (P

FI

, P

D

) ' (0.1, 0.95), meaning that, if a
10% false identification rate is considered acceptable, the
likelihood ratio will establish the presence of the SASI
in 95% of the cases. The same situation is realized for
Hyper-K for D ' 2 kpc. Naturally, the ROC deterio-
rates as D decreases, and ultimately (for D & 10 kpc)
it converges to the line P

D

= P

FI

, which corresponds to
a neutrino signal with SASI being completely indistin-
guishable from a signal without SASI. The ROC curves
allow to estimate the range where a fixed P

D

is achieved
for a desired P

FI

. If, e.g., we require the ROC to have
P

D

� 0.7 for P
FI

= 0.1, Fig. 4 indicates that the largest
distance of sensitivity to the SASI is D ' 6 kpc for Ice-
Cube and D ' 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is ac-
cepted as true (L > ⇤), the next step is estimation of
the parameters. For definiteness, here we present results
for ⇤ that corresponds to P

FI

= 0.1 (Eq. (13)).
In our method, the best fit values of the SASI fre-

quency, f̄

S

, and of the amplitude, ā, are found as the
values that maximize the likelihood L(P̃,⌦), within the
process of constructing the likelihood ratio (Eq. (11)).
From that process, we obtained the probability distribu-
tions of f̄

S

, and ā. We then calculated the mean and
standard deviation of f̄

S

and ā. The standard deviation
gives an estimate of approximately 68% confidence level
error with which an estimate of a given parameter can
be obtained.

The results are shown in Fig. 5 and Tables I (for
Hyper-K) and II (for IceCube). For Hyper-K and D = 10
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Vice-versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (11) serves
as our “SASI-meter” to identify the presence of SASI.

To assess the e↵ectiveness of the SASI-meter quantita-
tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This
was done by simulating (using a Monte Carlo method)
N

st

= 103 sets P̃ using the KKHT model with and with-
out SASI, so we will have L

S

⌘ L(P̃
SASI

) and L
nS

⌘
L(P̃

no�SASI

), and their probability density distributions,
Prob(L

S

) ' Prob(L|S) (where Prob(L|S) indicates the
“true” probability distribution, which would be obtained
in the limit N

st

! 1) and Prob(L
nS

) ' Prob(L|nS).
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that – under the two hypotheses – the likelihood
ratio exceeds a certain threshold value, ⇤:

P

D

=
R
L>⇤ Prob(L|S)dL , (12)

P

FI

=
R
L>⇤ Prob(L|nS)dL . (13)

⇤ usually represents a value of the likelihood ratio
above which the SASI hypothesis is accepted as true
(“detection”). Therefore, P

D

takes the meaning of SASI
detection probability, because it represents the probabil-
ity that the method accepts the SASI hypothesis as true
when the SASI is in fact true. P

FI

then represents the
false identification probability, i.e., the probability that
the SASI hypothesis is accepted when in fact the no-SASI
hypothesis is the true one.

The formalism discussed in this section becomes
clearer in light of the results we have obtained, which
are going to be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summa-
rized in fig. 3, for Hyper-K and IceCube, and for dif-
ferent distances to the supernova. For each detector and
distance, the figure shows the probability distributions of
lnL

S

and lnL
nS

.
We observe that, reflecting the expected sensitivity

of our SASI-meter, for short distances the two distribu-
tions are widely separated, with the distribution for the
SASI (no-SASI) case peaking at lower (higher) values of
the likelihood ratio [53]. The separation means that, if
the SASI hypothesis is true, there is a large probabil-
ity that the measured value of lnL will fall in a region
where the no-SASI hypothesis is strongly disfavored (i.e.,
Prob(L|nS) ⌧ Prob(L|S)). A similar argument holds if
the no-SASI hypothesis is true. We conclude, then, that
for a relatively close supernova (D ⇠ few kpc) the two
hypotheses are likely to be distinguished with high con-
fidence.

The separation between the two probability distribu-
tions decreases as D increases, until, for D ⇠ 10 kpc,

the SASI and no-SASI curves almost completely overlap,
meaning that the two hypotheses are very unlikely to be
distinguished. The dependence on the distance is due to
how the size of the the statistical fluctuations increases
with D, eventually overpowering the SASI, which there-
fore becomes invisible.
The trends shown in Fig. 3 are reflected in the behav-

ior of the detection and false identification probabilities,
P

D

and P

FI

(Eqs. (12) and (13)). These are described
by the Receiver Operating characteristic Curve (ROC).
The ROC is defined as the curve described in a plane
by the points (P

FI

(⇤), P
D

(⇤)), where ⇤ varies in the in-
terval [0,+1]. Fig. 4 shows the ROC for Hyper-K and
IceCube for several distances from the star. The plots
show the general features of the ROC: it passes by the
points (0, 0) and (1, 1) (corresponding to ⇤ ! +1 and
⇤ ! 0 respectively, see Eqs. (12) and (13)). Further-
more, the curve lies in the region P

D

> P

FI

, as expected
from Fig. 3. A high detectability potential corresponds
to a ROC where P

D

is as close as possible to 1 and at
the same time P

FI

is as close as possible to 0. For ex-
ample, for IceCube and D = 5 kpc, the ROC passes
by the point (P

FI

, P

D

) ' (0.1, 0.95), meaning that, if a
10% false identification rate is considered acceptable, the
likelihood ratio will establish the presence of the SASI
in 95% of the cases. The same situation is realized for
Hyper-K for D ' 2 kpc. Naturally, the ROC deterio-
rates as D decreases, and ultimately (for D & 10 kpc)
it converges to the line P

D

= P

FI

, which corresponds to
a neutrino signal with SASI being completely indistin-
guishable from a signal without SASI. The ROC curves
allow to estimate the range where a fixed P

D

is achieved
for a desired P

FI

. If, e.g., we require the ROC to have
P

D

� 0.7 for P
FI

= 0.1, Fig. 4 indicates that the largest
distance of sensitivity to the SASI is D ' 6 kpc for Ice-
Cube and D ' 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is ac-
cepted as true (L > ⇤), the next step is estimation of
the parameters. For definiteness, here we present results
for ⇤ that corresponds to P

FI

= 0.1 (Eq. (13)).
In our method, the best fit values of the SASI fre-

quency, f̄

S

, and of the amplitude, ā, are found as the
values that maximize the likelihood L(P̃,⌦), within the
process of constructing the likelihood ratio (Eq. (11)).
From that process, we obtained the probability distribu-
tions of f̄

S

, and ā. We then calculated the mean and
standard deviation of f̄

S

and ā. The standard deviation
gives an estimate of approximately 68% confidence level
error with which an estimate of a given parameter can
be obtained.

The results are shown in Fig. 5 and Tables I (for
Hyper-K) and II (for IceCube). For Hyper-K and D = 10
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Vice-versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (11) serves
as our “SASI-meter” to identify the presence of SASI.

To assess the e↵ectiveness of the SASI-meter quantita-
tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This
was done by simulating (using a Monte Carlo method)
N

st

= 103 sets P̃ using the KKHT model with and with-
out SASI, so we will have L

S

⌘ L(P̃
SASI

) and L
nS

⌘
L(P̃

no�SASI

), and their probability density distributions,
Prob(L

S

) ' Prob(L|S) (where Prob(L|S) indicates the
“true” probability distribution, which would be obtained
in the limit N

st

! 1) and Prob(L
nS

) ' Prob(L|nS).
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that – under the two hypotheses – the likelihood
ratio exceeds a certain threshold value, ⇤:

P

D

=
R
L>⇤ Prob(L|S)dL , (12)

P

FI

=
R
L>⇤ Prob(L|nS)dL . (13)

⇤ usually represents a value of the likelihood ratio
above which the SASI hypothesis is accepted as true
(“detection”). Therefore, P

D

takes the meaning of SASI
detection probability, because it represents the probabil-
ity that the method accepts the SASI hypothesis as true
when the SASI is in fact true. P

FI

then represents the
false identification probability, i.e., the probability that
the SASI hypothesis is accepted when in fact the no-SASI
hypothesis is the true one.

The formalism discussed in this section becomes
clearer in light of the results we have obtained, which
are going to be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summa-
rized in fig. 3, for Hyper-K and IceCube, and for dif-
ferent distances to the supernova. For each detector and
distance, the figure shows the probability distributions of
lnL

S

and lnL
nS

.
We observe that, reflecting the expected sensitivity

of our SASI-meter, for short distances the two distribu-
tions are widely separated, with the distribution for the
SASI (no-SASI) case peaking at lower (higher) values of
the likelihood ratio [53]. The separation means that, if
the SASI hypothesis is true, there is a large probabil-
ity that the measured value of lnL will fall in a region
where the no-SASI hypothesis is strongly disfavored (i.e.,
Prob(L|nS) ⌧ Prob(L|S)). A similar argument holds if
the no-SASI hypothesis is true. We conclude, then, that
for a relatively close supernova (D ⇠ few kpc) the two
hypotheses are likely to be distinguished with high con-
fidence.

The separation between the two probability distribu-
tions decreases as D increases, until, for D ⇠ 10 kpc,

the SASI and no-SASI curves almost completely overlap,
meaning that the two hypotheses are very unlikely to be
distinguished. The dependence on the distance is due to
how the size of the the statistical fluctuations increases
with D, eventually overpowering the SASI, which there-
fore becomes invisible.
The trends shown in Fig. 3 are reflected in the behav-

ior of the detection and false identification probabilities,
P

D

and P

FI

(Eqs. (12) and (13)). These are described
by the Receiver Operating characteristic Curve (ROC).
The ROC is defined as the curve described in a plane
by the points (P

FI

(⇤), P
D

(⇤)), where ⇤ varies in the in-
terval [0,+1]. Fig. 4 shows the ROC for Hyper-K and
IceCube for several distances from the star. The plots
show the general features of the ROC: it passes by the
points (0, 0) and (1, 1) (corresponding to ⇤ ! +1 and
⇤ ! 0 respectively, see Eqs. (12) and (13)). Further-
more, the curve lies in the region P

D

> P

FI

, as expected
from Fig. 3. A high detectability potential corresponds
to a ROC where P

D

is as close as possible to 1 and at
the same time P

FI

is as close as possible to 0. For ex-
ample, for IceCube and D = 5 kpc, the ROC passes
by the point (P

FI

, P

D

) ' (0.1, 0.95), meaning that, if a
10% false identification rate is considered acceptable, the
likelihood ratio will establish the presence of the SASI
in 95% of the cases. The same situation is realized for
Hyper-K for D ' 2 kpc. Naturally, the ROC deterio-
rates as D decreases, and ultimately (for D & 10 kpc)
it converges to the line P

D

= P

FI

, which corresponds to
a neutrino signal with SASI being completely indistin-
guishable from a signal without SASI. The ROC curves
allow to estimate the range where a fixed P

D

is achieved
for a desired P

FI

. If, e.g., we require the ROC to have
P

D

� 0.7 for P
FI

= 0.1, Fig. 4 indicates that the largest
distance of sensitivity to the SASI is D ' 6 kpc for Ice-
Cube and D ' 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is ac-
cepted as true (L > ⇤), the next step is estimation of
the parameters. For definiteness, here we present results
for ⇤ that corresponds to P

FI

= 0.1 (Eq. (13)).
In our method, the best fit values of the SASI fre-

quency, f̄

S

, and of the amplitude, ā, are found as the
values that maximize the likelihood L(P̃,⌦), within the
process of constructing the likelihood ratio (Eq. (11)).
From that process, we obtained the probability distribu-
tions of f̄

S

, and ā. We then calculated the mean and
standard deviation of f̄

S

and ā. The standard deviation
gives an estimate of approximately 68% confidence level
error with which an estimate of a given parameter can
be obtained.

The results are shown in Fig. 5 and Tables I (for
Hyper-K) and II (for IceCube). For Hyper-K and D = 10
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Vice-versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (11) serves
as our “SASI-meter” to identify the presence of SASI.

To assess the e↵ectiveness of the SASI-meter quantita-
tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This
was done by simulating (using a Monte Carlo method)
N

st

= 103 sets P̃ using the KKHT model with and with-
out SASI, so we will have L

S

⌘ L(P̃
SASI

) and L
nS

⌘
L(P̃

no�SASI

), and their probability density distributions,
Prob(L

S

) ' Prob(L|S) (where Prob(L|S) indicates the
“true” probability distribution, which would be obtained
in the limit N

st

! 1) and Prob(L
nS

) ' Prob(L|nS).
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that – under the two hypotheses – the likelihood
ratio exceeds a certain threshold value, ⇤:

P

D

=
R
L>⇤ Prob(L|S)dL , (12)

P

FI

=
R
L>⇤ Prob(L|nS)dL . (13)

⇤ usually represents a value of the likelihood ratio
above which the SASI hypothesis is accepted as true
(“detection”). Therefore, P

D

takes the meaning of SASI
detection probability, because it represents the probabil-
ity that the method accepts the SASI hypothesis as true
when the SASI is in fact true. P

FI

then represents the
false identification probability, i.e., the probability that
the SASI hypothesis is accepted when in fact the no-SASI
hypothesis is the true one.

The formalism discussed in this section becomes
clearer in light of the results we have obtained, which
are going to be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summa-
rized in fig. 3, for Hyper-K and IceCube, and for dif-
ferent distances to the supernova. For each detector and
distance, the figure shows the probability distributions of
lnL

S

and lnL
nS

.
We observe that, reflecting the expected sensitivity

of our SASI-meter, for short distances the two distribu-
tions are widely separated, with the distribution for the
SASI (no-SASI) case peaking at lower (higher) values of
the likelihood ratio [53]. The separation means that, if
the SASI hypothesis is true, there is a large probabil-
ity that the measured value of lnL will fall in a region
where the no-SASI hypothesis is strongly disfavored (i.e.,
Prob(L|nS) ⌧ Prob(L|S)). A similar argument holds if
the no-SASI hypothesis is true. We conclude, then, that
for a relatively close supernova (D ⇠ few kpc) the two
hypotheses are likely to be distinguished with high con-
fidence.

The separation between the two probability distribu-
tions decreases as D increases, until, for D ⇠ 10 kpc,

the SASI and no-SASI curves almost completely overlap,
meaning that the two hypotheses are very unlikely to be
distinguished. The dependence on the distance is due to
how the size of the the statistical fluctuations increases
with D, eventually overpowering the SASI, which there-
fore becomes invisible.
The trends shown in Fig. 3 are reflected in the behav-

ior of the detection and false identification probabilities,
P

D

and P

FI

(Eqs. (12) and (13)). These are described
by the Receiver Operating characteristic Curve (ROC).
The ROC is defined as the curve described in a plane
by the points (P

FI

(⇤), P
D

(⇤)), where ⇤ varies in the in-
terval [0,+1]. Fig. 4 shows the ROC for Hyper-K and
IceCube for several distances from the star. The plots
show the general features of the ROC: it passes by the
points (0, 0) and (1, 1) (corresponding to ⇤ ! +1 and
⇤ ! 0 respectively, see Eqs. (12) and (13)). Further-
more, the curve lies in the region P

D

> P

FI

, as expected
from Fig. 3. A high detectability potential corresponds
to a ROC where P

D

is as close as possible to 1 and at
the same time P

FI

is as close as possible to 0. For ex-
ample, for IceCube and D = 5 kpc, the ROC passes
by the point (P

FI

, P

D

) ' (0.1, 0.95), meaning that, if a
10% false identification rate is considered acceptable, the
likelihood ratio will establish the presence of the SASI
in 95% of the cases. The same situation is realized for
Hyper-K for D ' 2 kpc. Naturally, the ROC deterio-
rates as D decreases, and ultimately (for D & 10 kpc)
it converges to the line P

D

= P

FI

, which corresponds to
a neutrino signal with SASI being completely indistin-
guishable from a signal without SASI. The ROC curves
allow to estimate the range where a fixed P

D

is achieved
for a desired P

FI

. If, e.g., we require the ROC to have
P

D

� 0.7 for P
FI

= 0.1, Fig. 4 indicates that the largest
distance of sensitivity to the SASI is D ' 6 kpc for Ice-
Cube and D ' 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is ac-
cepted as true (L > ⇤), the next step is estimation of
the parameters. For definiteness, here we present results
for ⇤ that corresponds to P

FI

= 0.1 (Eq. (13)).
In our method, the best fit values of the SASI fre-

quency, f̄

S

, and of the amplitude, ā, are found as the
values that maximize the likelihood L(P̃,⌦), within the
process of constructing the likelihood ratio (Eq. (11)).
From that process, we obtained the probability distribu-
tions of f̄

S

, and ā. We then calculated the mean and
standard deviation of f̄

S

and ā. The standard deviation
gives an estimate of approximately 68% confidence level
error with which an estimate of a given parameter can
be obtained.

The results are shown in Fig. 5 and Tables I (for
Hyper-K) and II (for IceCube). For Hyper-K and D = 10
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Vice-versa, L will take lower values if the SASI signatures
in the data become weaker. Therefore, Eq. (11) serves
as our “SASI-meter” to identify the presence of SASI.

To assess the e↵ectiveness of the SASI-meter quantita-
tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This
was done by simulating (using a Monte Carlo method)
N

st

= 103 sets P̃ using the KKHT model with and with-
out SASI, so we will have L

S

⌘ L(P̃
SASI

) and L
nS

⌘
L(P̃

no�SASI

), and their probability density distributions,
Prob(L

S

) ' Prob(L|S) (where Prob(L|S) indicates the
“true” probability distribution, which would be obtained
in the limit N

st

! 1) and Prob(L
nS

) ' Prob(L|nS).
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that – under the two hypotheses – the likelihood
ratio exceeds a certain threshold value, ⇤:

P

D

=
R
L>⇤ Prob(L|S)dL , (12)

P

FI

=
R
L>⇤ Prob(L|nS)dL . (13)

⇤ usually represents a value of the likelihood ratio
above which the SASI hypothesis is accepted as true
(“detection”). Therefore, P

D

takes the meaning of SASI
detection probability, because it represents the probabil-
ity that the method accepts the SASI hypothesis as true
when the SASI is in fact true. P

FI

then represents the
false identification probability, i.e., the probability that
the SASI hypothesis is accepted when in fact the no-SASI
hypothesis is the true one.

The formalism discussed in this section becomes
clearer in light of the results we have obtained, which
are going to be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summa-
rized in fig. 3, for Hyper-K and IceCube, and for dif-
ferent distances to the supernova. For each detector and
distance, the figure shows the probability distributions of
lnL

S

and lnL
nS

.
We observe that, reflecting the expected sensitivity

of our SASI-meter, for short distances the two distribu-
tions are widely separated, with the distribution for the
SASI (no-SASI) case peaking at lower (higher) values of
the likelihood ratio [53]. The separation means that, if
the SASI hypothesis is true, there is a large probabil-
ity that the measured value of lnL will fall in a region
where the no-SASI hypothesis is strongly disfavored (i.e.,
Prob(L|nS) ⌧ Prob(L|S)). A similar argument holds if
the no-SASI hypothesis is true. We conclude, then, that
for a relatively close supernova (D ⇠ few kpc) the two
hypotheses are likely to be distinguished with high con-
fidence.

The separation between the two probability distribu-
tions decreases as D increases, until, for D ⇠ 10 kpc,

the SASI and no-SASI curves almost completely overlap,
meaning that the two hypotheses are very unlikely to be
distinguished. The dependence on the distance is due to
how the size of the the statistical fluctuations increases
with D, eventually overpowering the SASI, which there-
fore becomes invisible.
The trends shown in Fig. 3 are reflected in the behav-

ior of the detection and false identification probabilities,
P

D

and P

FI

(Eqs. (12) and (13)). These are described
by the Receiver Operating characteristic Curve (ROC).
The ROC is defined as the curve described in a plane
by the points (P

FI

(⇤), P
D

(⇤)), where ⇤ varies in the in-
terval [0,+1]. Fig. 4 shows the ROC for Hyper-K and
IceCube for several distances from the star. The plots
show the general features of the ROC: it passes by the
points (0, 0) and (1, 1) (corresponding to ⇤ ! +1 and
⇤ ! 0 respectively, see Eqs. (12) and (13)). Further-
more, the curve lies in the region P

D

> P

FI

, as expected
from Fig. 3. A high detectability potential corresponds
to a ROC where P

D

is as close as possible to 1 and at
the same time P

FI

is as close as possible to 0. For ex-
ample, for IceCube and D = 5 kpc, the ROC passes
by the point (P

FI

, P

D

) ' (0.1, 0.95), meaning that, if a
10% false identification rate is considered acceptable, the
likelihood ratio will establish the presence of the SASI
in 95% of the cases. The same situation is realized for
Hyper-K for D ' 2 kpc. Naturally, the ROC deterio-
rates as D decreases, and ultimately (for D & 10 kpc)
it converges to the line P

D

= P

FI

, which corresponds to
a neutrino signal with SASI being completely indistin-
guishable from a signal without SASI. The ROC curves
allow to estimate the range where a fixed P

D

is achieved
for a desired P

FI

. If, e.g., we require the ROC to have
P

D

� 0.7 for P
FI

= 0.1, Fig. 4 indicates that the largest
distance of sensitivity to the SASI is D ' 6 kpc for Ice-
Cube and D ' 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is ac-
cepted as true (L > ⇤), the next step is estimation of
the parameters. For definiteness, here we present results
for ⇤ that corresponds to P

FI

= 0.1 (Eq. (13)).
In our method, the best fit values of the SASI fre-

quency, f̄

S

, and of the amplitude, ā, are found as the
values that maximize the likelihood L(P̃,⌦), within the
process of constructing the likelihood ratio (Eq. (11)).
From that process, we obtained the probability distribu-
tions of f̄

S

, and ā. We then calculated the mean and
standard deviation of f̄

S

and ā. The standard deviation
gives an estimate of approximately 68% confidence level
error with which an estimate of a given parameter can
be obtained.

The results are shown in Fig. 5 and Tables I (for
Hyper-K) and II (for IceCube). For Hyper-K and D = 10
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FIG. 4: Receiver operating characteristic curves based on
KKHT model for Hyper-K (top panel) and Ice Cube (bot-
tom panel), for several distances to the supernova. See Eqs.
(12)-(13).

kpc, where the sensitivity to the SASI is poor, the dis-
tribution for f̄

S

is very broad, with roughly all values
being equally probable. This indicates that, although
there might be indication of an oscillatory behavior in the
data (such that the likelihood ratio is above the thresh-
old), such outcome is most likely to be due to random
statistical fluctuations and not to SASI. An estimate of
the frequency would have a large error and might not
be physically meaningful. The corresponding distribu-
tion for ā is similarly broad for ā & 0.03, indicating that,
as long as there is indication of an oscillatory pattern in
the data, its amplitude can vary widely, and is probably
driven by statistical fluctuations.

As D decreases (D . 5 kpc or so) the distributions of
both f̄

S

and ā start to concentrate around the physical
values of the injected SASI model, f̄

S

⇠ 120 Hz and
ā ⇠ 0.05, indicating a sensitivity to the physical SASI
signal above statistical fluctuations. This trend appears
in Table I as well, where one can see the decrease of
the standard deviation with the decreasing distance. We
note that the width of the distributions for a and f

S

depend in part on how the time structure of the neutrino
signal in the KKHT model is only roughly reproduced by

the simplified template, Eq. (1). As a consistency test,
we checked that using simulated data drawn from the
simplified template has the (expected) e↵ect of producing
narrower parameter distributions [54].
We caution the reader about the meaning of the mul-

tiple peaks that appear in the distributions in Fig. 5:
these peaks reflect the discrete structure of the power
spectrum series {P̃

k

} which is being analyzed, which has
a resolution (frequency bin size) of about 20 Hz (see eq.
(3) and Fig. 2), and therefore do not have a direct phys-
ical meaning.
The probability distributions and tabulated values

(Table II) for IceCube show a structure and dependence
on D similar to those for Hyper-K. A di↵erence is that
at D = 10 kpc, the sensitivity to SASI is not completely
washed out by the statistical fluctuations, so it might be
possible to obtain a (coarse) measurement of f

S

.

B. Fisher Information Matrix and minimum
uncertainties

In this section we aim at comparing the standard de-
viations of the SASI parameters obtained using the like-
lihood ratio method with the theoretical lower bound in
the accuracy. The latter is given by the Cramer-Rao
lower bound [41], and is derived from the Fisher Informa-
tion Matrix (FIM). We begin by summarizing the main
formulae of the FIM formalism; these will then be applied
to the case at hand.
Let us consider a generic template R(t

i

) for the event
rate at discrete times, t

i

(i = 1, 2, ..., N), which depends
on a set of parameters, ✓

↵

(↵ = 1, 2, 3, ..,K) (note that,
for our choice of unitary bin size, � = 1 ms, the event
rate and the number of events are numerically the same.
Here we omit the factor� to keep the notation compact).
The FIM is a K ⇥K matrix, found from the probability
distribution. We define the joint probability as:

Prob(R̃) =
NY

i=0

Prob(R̃
i

), (14)

where R̃ is the series of observed neutrino rate
{R̃(t1), R̃(t2), ...R̃(t

N

)} in time domain. The FIM de-
scribes how much each parameter a↵ects the distribution
via its second derivatives:

�
↵�

= h�@

2 lnProb(~R)

@✓

↵

@✓

�

i , (15)

In the assumption that Prob(R̃(t
i

)) is a Multivariate
Gaussian Distribution in the time domain, the FIM re-
duces to the following expression (see Appendix C):

�
↵�

= µ

T

↵

⌃�1
µ

�

+
1

2
Tr[c̃

↵

c̃

�

] , (16)
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CONCLUSIONS	AND	OPEN	QUESTIONS



The	future	is	bright	for	SN	neutrinos

• The	wait	for	new	data	is	almost	over
• Guaranteed:	diffuse	flux	detection	
• Transition	from	rare	event	to	constant	data-taking
• Will	reveal	diverse	picture



• There	will	be	a	galactic	supernova	
detection
• Possible,	same	probability	every	day
• First	time	detailed	narrative	of	
collapse,	shock	propagation,	PNS	
cooling



• Betelgeuse	could	collapse	at	any	time
• You	will	have	a	few	hours	to	prepare	for	the	show
• Watch	terminal	stellar	evolution	in	real	time





BACKUP



Diversity:	failed supernovae
• collapse	directly into	a	black	
hole,	no	explosion!
• ~10	- 40%	of	collapses

• Supported	by:
• numerical	simulations
• Problem	of	missing	red	
supergiants

• Evidence	of	a	disappearing	star	
(a	“survey	about	nothing”)

Horiuchi et	al.,	MNRAS	Lett.	445	(2014)	L99
Kochanek,	ApJ 785	(2014)	28
Kochanek et	al.	ApJ 684	(2008)	1336
Adams	et	al.,	MNRAS,		468,	4,	p.	4968-4981

Figure	from	Sukhbold et	al.,	Astrophys.J.	821	(2016)	no.1,	38

See also works by:
E.	O’Connor and	C.	D.	Ott,		
Pejcha and	Thompson,	
Ertl,	Janka,	Woosley,	Sukhbold and	Ugliano,	
Hudephol and	Janka
Kuroda,	Takami,	Kotake,	Theielemann



Pre-supernova	neutrinos!

nuclear	burning/
Volume	emission



Accretion:	Standing Accretion Shock Instability	(SASI)

• Stalled	shock	wave
• Deformation,	sloshing	of	shock	
front	
• Fluctuating	ν emission	rate

• Strong	in	3D	with	detailed	
neutrino	transport

Blondin,	Mezzacappa,	DeMarino,	ApJ.	584	
(2003);	Scheck	et	al.,	A&A.	477	(2008)

Tamborra et	al.,	arXiv:1307.7936
See	also Lund	et	al.,	PRD	82,	(2010),	PRD	86,		(2012)
Kuroda,	Kotake,	Hayama and	Takami,	ApJ,	851:62,		2017	

Figure from	Tamborra et	al.,	arXiv:1307.7936
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and Boltzmann equations [44, 45]. We employ state-of-
the-art neutrino interaction rates [24, 45] and relativistic
gravity and redshift corrections [44, 46].
The RbR+ description assumes the neutrino momen-

tum distribution to be axisymmetric around the radial
direction everywhere, implying that the neutrino fluxes
are radial. The detectable energy-dependent neutrino
emission from the hemisphere facing an observer is de-
termined with a post-processing procedure that includes
projection and limb-darkening effects [30]. We will use
the 27M⊙ model as our benchmark case because its prop-
erties have been published [15]. Details of the other two
simulations will be provided elsewhere [47]. All simula-
tions used artificial random density perturbations of 0.1%
amplitude on the whole numerical grid to seed the growth
of hydrodynamic instabilities. None of the models had
exploded at the end of the computation runs.
Detector signal.—In the largest operating detectors,

IceCube and Super-K, neutrinos are primarily detected
by inverse beta decay, ν̄e+p → n+e+, through Cherenkov
radiation of the positron. We represent the neutrino
emission spectra in the form of Gamma distributions
[48, 49]. We estimate the neutrino signal following the
IceCube Collaboration [37], accounting for a ∼13% dead-
time effect for background reduction. We use a cross sec-
tion that includes recoil effects and other corrections [50],
overall reducing the detection rate by 30% relative to ear-
lier studies [20, 21, 51]. On the other hand, we increase
the rate by 6% to account for detection channels other
than inverse beta decay [37].
We assume an average background of 0.286 ms−1 for

each of the 5160 optical modules, i.e., an overall back-
ground rate of Rbkgd = 1.48× 103 ms−1, comparable to
the signal rate for a SN at 10 kpc. The IceCube data ac-
quisition system has been upgraded since the publication
of Ref. [37] so that the full neutrino time sequence will
be available instead of time bins.
IceCube will register in total around 106 events above

background for a SN at 10 kpc, to be compared with
around 104 events for Super-K (fiducial mass 32 kton),
i.e., IceCube has superior statistics. On the other hand,
the future Hyper-K will have a fiducial mass of 740 kton,
providing a background-free signal of roughly 1/3 the Ice-
Cube rate. Therefore, Hyper-K can have superior signal
statistics, depending on SN distance. In addition, it has
event-by-event energy information which we do not use
for our simple comparison.
Signal modulation in the 27M⊙ model.—To get a first

impression of the neutrino signal modulation we consider
our published 27M⊙ model [15], meanwhile simulated
until ∼550 ms. This model shows clear SASI activity at
120–260ms. At ∼220ms a SASI spiral mode sets in and
remains largely confined to an almost stable plane, which
is not aligned with the polar grid of the simulation. We
select an observer in this plane in a favorable direction
and show the expected IceCube signal in the top panel
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FIG. 1: Detection rate for our 27 M⊙ SN progenitor, upper
panels for IceCube, bottom one for Hyper-K. The observer
direction is chosen for strong signal modulation, except for
the second panel (minimal modulation). Upper two panels:
IceCube rate at 10 kpc for ν̄e (no flavor conversion) and for
ν̄x (complete flavor conversion). The lower two panels include
a random shot-noise realization, 5ms bins, for the indicated
SN distances. For IceCube also the background fluctuations
without a SN signal are shown.

of Fig. 1. One case assumes the signal to be caused by
anti-neutrinos emitted as ν̄e at the source, i.e., we ignore
flavor conversions. The other case takes into account
complete flavor conversion so that the signal is caused by
ν̄x, i.e., a combination of ν̄µ and ν̄τ . Both cases reveal
large signal modulations with a clear periodicity.



High	(low)	statistics,	low	(high)	probability

Pablo	Fernandez,		Super-Kamiokande coll.,	PhD	thesis,	2017.
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Detection of Neutrinos from Supernovae in Nearby Galaxies
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While existing detectors would see a burst of many neutrinos from a Milky Way supernova, the
supernova rate is only a few per century. As an alternative, we propose the detection of ∼ 1 neutrino
per supernova from galaxies within 10 Mpc, in which there were at least 9 core-collapse supernovae
since 2002. With a future 1-Mton scale detector, this could be a faster method for measuring the
supernova neutrino spectrum, which is essential for calibrating numerical models and predicting the
redshifted diffuse spectrum from distant supernovae. It would also allow a >

∼
104 times more precise

trigger time than optical data alone for high-energy neutrinos and gravitational waves.

PACS numbers: 97.60.Bw, 95.55.Vj

One of the unsolved problems of astrophysics is how
core-collapse supernovae explode. Nuclear fusion reac-
tions in the core of a massive star produce progressively
heavier elements until a Chandrasekhar mass of iron is
formed, and electron degeneracy pressure cannot support
the core under the weight of the stellar envelope. The
core collapses until it reaches nuclear densities and neu-
trino emission begins; then an outgoing bounce shock
should form, unbinding the envelope and producing the
optical supernova. While successful in nature, in most
numerical supernova models, the shock stalls, so that the
fate of the entire star is to produce a black hole (after
substantial neutrino emission), but no optical supernova.

Since the gravitational energy release transferred to
neutrinos, about 3×1053 erg, is ∼ 100 times greater than
the required kinetic energy for the explosion, it is thought
that neutrino emission and interactions are a key diag-
nostic or ingredient of success. However, not enough is
directly known about the total energies and temperatures
of the neutrino flavors. The ≃ 20 events from SN 1987A
were only crudely consistent with expectations for ν̄e, and
gave very little information on the other flavors [1]. It is
thus essential to collect more supernova neutrino events.
A Milky Way supernova would allow detailed measure-
ments, but the supernova rate is only a few per century.
If Super-Kamiokande were loaded with GdCl3 [2], the
diffuse supernova neutrino background (DSNB) [3, 4, 5]
could be cleanly detected, probing the supernova neu-
trino spectrum, but convolved with the rapidly evolving
star formation rate [6] up to redshift z ≃ 1.

We propose an intermediate regime, in which the num-
ber of events per supernova is ∼ 1, instead of ≫ 1 (Milky
Way) or≪ 1 (DSNB), motivated by the serious consider-
ation of 1-Mton scale water-Čerenkov detectors in Japan
(Hyper-Kamiokande [7]), the United States (UNO [8]),
and Europe (MEMPHYS [9]). These detectors, which
may operate for decades, are intended for proton decay
and long-baseline accelerator neutrino oscillation studies,

0 2 4 6 8 10
Distance D [Mpc]

0

0.2

0.4

0.6

0.8

1

R
SN   

(<
 D

)  
[y

r-1
]

Galaxy

Limit
M

 3
1

N
G

C
 2

53
M

 8
1,

 M
 8

2,
 N

G
C

 4
94

5

N
G

C
 2

90
3IC

 3
42

,  
N

G
C

 2
40

3

N
G

C
 5

19
4

N
G

C
 4

59
4

N
G

C
 6

94
6

M
af

fe
i G

ro
up

M
 8

3

N
G

C
 4

25
8

M
 1

01

Catalog

Continuum

FIG. 1: Cumulative calculated core-collapse supernova rate
versus distance. The dashed line is the continuum limit using
the GALEX z = 0 star formation rate [6]. For our partic-
ular local volume, and its fortuitous enhancement, we use a
galaxy catalog [11]; the stepped line is based on star formation
rates for individual galaxies, and the band is the uncertainty.
Some major galaxies are indicated, and those in boxes have
especially high optical supernova rates (see Table I).

but could also detect neutrinos from Milky Way super-
novae, a point which has attracted much interest [10].
The distance range of a 1-Mton detector is about 10 Mpc,
within which the calculated supernova rate is about one
per year, as shown in Fig. 1. Since the number of events
per supernova is small, background rejection requires a
coincidence of at least two neutrinos or one neutrino and
an optical (or other waveband) supernova.
Supernova Neutrino Detection.—For a Milky

Way supernova at 10 kpc, the expected number of events

Rate	of	collapses	within distance	D



Late	time:	volume	emission
• Nu-sphere	recedes;	
disappears	at	t~40	s.	
• transition	to	
transparency,	volume	
emission

• Direct sensitivity	to	ν
production	processes
• Properties	of	nuclear	
matter	in	PNS

• Potential	to	measure	
PNS	radius

Roberts	and	Reddy,	Handbook	of	Supernovae,	Springer	Intl.,	2017
See	also	Fischer	et	al.,	1112.3842	;	Pons	et	al.,	Phys.Rev.Lett.86,2001

Gallo	Rosso,	Abbar,	Vissani and	Volpe,	
arxiv:1809.09074



Early	alert!
• Days/hours	to:	

• Optimize	neutrino	detectors	for	upcoming	burst
• Point	directional	detectors	(telescopes,	axion detectors,	etc.)
• Shield	sensitive	equipment
• Alert	governments/public	(?)		



Direct	probe	of	advanced	stellar	evolution

• Evolution	of	temperature,	
density
• ν from	thermal	processes

• isotopic	evolution	
• ν from	beta	processes
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Si	shell	burning	ignition

2

stellar evolution. In the later stages of nuclear burning, neutrinos become the main source of energy loss while also increasing

the entropy of the star as it nears core collapse (Woosley et al. 2002). The physics of these neutrinos is interesting also as an

important application of the more general problem of neutrino emission in hot and dense stellar matter.

With these motivations, studies have been conducted on the neutrino emissivity of stars in the presupernova stage. Most of the

literature so far has focused on neutrinos produced via thermal processes, for representative conditions (temperature, density and

chemical potential) of the stellar matter. The earliest works (Odrzywolek et al. 2004a,b; Kutschera et al. 2009) included only the

pair annihilation process, and parameters typical of the Si burning phase. The possibility to detect the resulting neutrino flux was

discussed, with encouraging conclusions. A more detailed study of presupernova neutrinos from thermal processes, and their

detectability, has appeared recently (Kato et al. 2015), including pair annihilation and plasmon decay. Rather than representative

parameters, this work uses realistic, time-evolving profiles of temperature, density and chemical potential from numerical models

of stellar evolution (Takahashi et al. 2013). A second paper by a subset of the authors of Kato et al. (2015) explores in detail the

pair annihilation neutrino spectra and detection potential in both current and future detectors, with emphasis on what the variation

in the neutrino signal can indicate about stellar evolution (Yoshida et al. 2016).

Until now, the role of β processes in presupernova neutrinos has been discussed only in the basics, in the works of Odrzywolek

and Heger (Odrzywolek 2009; Odrzywolek and Heger 2010). There, arguments of nuclear statistical equilibrium or α-networks

are used to determine isotopic composition. In Odrzywolek and Heger (2010), it is explicitly emphasized that both methods

are inadequate, and that a full, self-consistent stellar evolution simulation, with a large and accurate nuclear reaction network is

ultimately needed.

In this work, such rigorous approach is realized for the first time. We present a new, comprehensive calculation of the pre-

supernova neutrino emission, which includes, in addition to the main thermal processes (pair annihilation, plasmon decay, and

the photoneutrino process), a detailed treatment of β decay and electron capture. These processes are modeled using updated

nuclear rate tables (Langanke and Martinez-Pinedo 2001; Oda et al. 1994) as a supplement to the classic ones by Fuller, Fowler

and Newman (Fuller et al. 1980, 1982a,b, 1985). The relevant microphysics is then applied to a realistic star using the detailed,

time-evolving profiles of temperature, density, and nuclear isotopic composition from the state-of-the-art stellar evolution code

MESA (Modules for Experiments in Stellar Astrophysics) (Paxton et al. 2011, 2013, 2015). We place emphasis on modeling

of the neutrino spectrum above a realistic detection threshold of 2 MeV; this requires including certain β processes that are

subdominant in the total energy budget of the star.

The paper is structured as follows. After a summary of background information (sec. 2), the relevant formalism of neutrino

emissivities and spectra is discussed in sec. 2.1 for β-processes, and in sec. 2.2 for thermal processes. In sec. 3 numerical

results are shown for several steps of a star’s presupernova evolution, and for different progenitor stars, as modeled by MESA. A

discussion and final considerations are given in sec. 4.

Table 1. Summary of the processes included in this work, with the main references to prior literature.

Processes Formulae Main References

β± decay A(N,Z)→ A(N − 1,Z + 1) + e− + νe

A(N,Z)→ A(N + 1,Z − 1) + e+ + νe Fuller et al. (1980, 1982b,a, 1985),

Beta Langanke and Martinez-Pinedo (2001),

e+/e− capture A(N,Z) + e− → A(N + 1,Z − 1) + νe Oda et al. (1994); Odrzywolek (2009)

A(N,Z) + e+ → A(N − 1, Z + 1) + νe

plasma γ∗ → να + να Ratkovic et al. (2003); Odrzywolek (2007)

Thermal photoneutrino e± + γ → e± + να + να Dutta et al. (2004)

pair e+ + e− → να + να Misiaszek et al. (2006)

2. NEUTRINO PRODUCTION IN A PRESUPERNOVA ENVIRONMENT

About ∼ 103 years before becoming a supernova, a star begins to experience the fusion of heavy (beyond helium) elements.

First, carbon fusion is ignited; as the temperature and density increases, then the fusion of Ne, O, and Si take place in the core

of the star. Each stage is faster than the previous one: the core O burning phase only lasts a few months, and the core Si burning
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Multi-messenger:	gravitational	“memory”
• Time-integrated,	non-oscillatory	effect,	due	to	neutrino	cooling

• Requires	anisotropy of	emission

• Produces	a	low	frequency	signal	in	GW	detectors

The GW Signature of Core-Collapse SNe 29

has been first realized in linear theory via the direct solution of the inhomogeneous
wave equation by Epstein [81] (but, see also Turner’s independent derivation in the
zero-frequency limit [82]).

Burrows & Hayes [123] and Müller & Janka [124] were the first authors to
implement the formalism. It has since been employed in a number of other studies
[23, 35, 85, 97, 98, 179, 215]. In the following, we present a short overview on the
formalism as used by [123, 124] in axisymmetry. More details and the generalization
to 3D can be found in [35, 124].

For axial symmetry, [123, 124] write the dimensionless GW strain for an observer
positioned in the equatorial plane as

hTT
+,eq(t) =

2G

c4D

∫ t−D/c

−∞

α(t′)Lν(t′)dt′ , (3)

where Lν(t) is the total neutrino luminosity and α(t) is the instantaneous neutrino
radiation anisotropy that includes the transverse-traceless projections [124]. It is
defined as

α(t) =
1

Lν(t)

∫

4π
Ψ(ϑ′, ϕ′)

dLν(Ω⃗′, t)

dΩ′
dΩ′ , (4)

where dLν(Ω⃗, t)/dΩ is the energy radiated at time t per unit of time and per unit of
solid angle into direction Ω⃗ with

Lν(t) =

∫

4π

dLν(Ω⃗′, t)

dΩ′
dΩ′ . (5)

Ψ(ϑ, ϕ) represents the angle dependent factors in terms of source coordinate system
angles ϑ and ϕ and depends on the particular GW polarization and the observer
position relative to the source. In axisymmetry, hTT

× = 0 everywhere, and hTT
+ = 0

along the axis of symmetry. For an observer located in the equatorial plane, observing
the + GW polarization, Ψ(ϑ, ϕ) is given [35, 124] by

Ψ(ϑ, ϕ) = (1 + sin ϑ cosϕ)
cos2 ϑ − sin2 ϑ sin2 ϕ

cos2 ϑ + sin2 ϑ sin2 ϕ
. (6)

In axisymmetry, there is no ϕ dependence of the luminosity. By integrating Ψ(ϑ, ϕ)
over ϕ, equations 4 and 6 combine to [35, 85],

α(t) =
2π

Lν(t)

∫ π

0
sin θ′(−1 + 2| cos θ′|)

dLν(θ′, t)

dθ′
dθ′ . (7)

Note that the GW signal due to neutrinos observed at time t + D/c contains
contributions from anisotropies in the neutrino radiation field at all times prior t. This
leads to a memory effect in the GW signal, leaving behind a constant (“DC”) offset
after the anisotropic neutrino emission subsides. Largely-aspherical mass ejection can
lead to a similar GW memory (see section 9). The implications and detectability of
such GW bursts with memory were discussed in [34, 216].

In the context of massive star collapse and core-collapse SNe, anisotropic neutrino
radiation and the associated emission of GWs may arise (a) from rotationally-deformed
PNSs [35, 42, 97, 215], (b) from convective overturn and SASI [23, 42, 85, 97, 98, 124],
and (c) from global asymmetries in the (precollapse) matter distribution [123, 179].

R. Epstein. Astrophys. J., 223, 1037, 1978
M. S. Turner. Nature, 274, 565, 1978.

See reviews: Ott , Class.Quant.Grav.26:063001,2009,
Kotake et al., Adv.Astron.	2012	(2012)	428757 ,  



• GW	signature:

• f	<	10	Hz
• Linear	in	1/R

• Detectable	for	near-Earth	
SN?

Memory	sources:	supernovae	
Simula>ons	from	mul>ple	groups	

show	a	memory	effect	due	to	

anisotropic	ma[er	or	neutrino	

emission:	

[Burrows	&	Hayes	‘94,	Murphy,	O[,	

Burrows	’09,	Kotake	et	al	‘09,	Muller	

&	Janka	’97,	Yakunin	et	al	‘10]		

[Yakunin	et	al	’10]	

Size	of	memory	varies	among	

simula>ons	depending	on	input	

physics.	

[reviews	by	O[’09	&	Kotake	‘11]	
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Figure 13: Spectral distributions of GWs from matter motions
(“Matter”) and neutrino emission (“Neutrino”) seen from the pole
or the equator for a representative 3D rotating model (e.g., [210])
with the expected detection limits of TAMA300 [12], first LIGO and
advanced LIGO [215], Large-scale Cryogenic Gravitational wave
Telescope (LCGT) [216] and Fabry-Perot type DECIGO [217]. It is
noted that hchar is the characteristic gravitational wave strain defined
in [218]. The distance to the supernova is assumed to be 10 kpc.
Note that for the matter signal, the + mode seen from the polar
direction is plotted (from [210]).

neutrino transport are apparently needed (e.g., Section 2.1).
This is unquestionably a vast virgin territory awaited to be
explored for the future.

2.3. Explosive Nucleosynthesis. In this section, we proceed
to discuss possible signatures of supernova nucleosynthesis.
The study of nucleosynthesis is of primary importance to
unveil the origins of heavy elements. It could also provide a
valuable information of the ejecta morphology by observing
the aspherical distributions of the synthesized elements espe-
cially for a nearby CCSN event (note that nucleosynthesis is
not critical for the modeling of the light-curve and spectra
for the most frequent types of SNe II-P). In the following,
we first present a short overview paying particular attention
to explosive nucleosynthesis, and then discuss possible
observational signatures that would imprint information of
multidimensionalities of the supernova engine.

When in a successful explosion the shock passes through
the outer shells, its high temperature induces an explosive
nucleosynthesis on short timescales (e.g., [118, 119, 221],
and collective references in [222]). The observational deter-
mination of the masses of the three main radioactive isotopes
56Ni, 57Ni, and 44Ti sets one of the main constraints on
the explosion dynamics, because the production of these
elements is sensitive to the track of density and temperature
that the expanding material traces (e.g., [223]). During the

shock propagation, iron group elements such as 56Ni and its
daughter nucleus 56Co are predominantly produced, which
are radioactive with a lifetime of 8.8 days and 111.5 days,
respectively. Most CCSNe enter the so-called nebular phase
after the first few months when the expanding ejecta becomes
optically thin in the continuum. In the early nebular phase,
56Co is the major nuclear power source. As long as the
decay particles are trapped by the ejecta, the radiation energy
supplied by radioactivity is emitted instantaneously, so that
the light curve can be described by an exponential decay with
time, simply tracing the decay of the 56Co nuclide. To explain
the bolometric light curve of SN1987A in such a phase, the
56Ni mass was determined to be 0.07M⊙ [224].

After several years of explosion, the radioactive output
from the ejecta no longer balances with the instantaneous
input by radioactivity, because the reprocessing timescale
is going to be longer [225]. The bolometric light curve
is affected by the delayed release of the ionization energy.
After that, a self-consistent modeling is needed, in which
one should include a detailed calculation of the gamma-
ray/positron thermalization and a determination of the time-
dependent temperature, ionization, and excitation (e.g.,
[225–228] and references therein). Such a time-dependent
modeling by Fransson and Kozma [225] revealed the 57Ni
mass of ∼3.3 ×10−3M⊙ of SN1987A, which agrees well with
observations (e.g., [229, 230] and collective references in
[231]).

By the similar reason to 57Ni just mentioned above, the
determination of the 44Ti is also complicated. The most
recent study by Jerkstrand et al. [228] gives an estimate
of the 44Ti to be 1.5+0.5

−0.5 × 10−4M⊙, which is in good
agreement with the eight-year spectrum analysis of SN1987A
(e.g., [232], see also [233]). As shown above, the amount
of 44Ti is typically one order-of-magnitude smaller than
that of 57Ni, however it is crucially important for young
supernova remnants due to its long lifetime (∼86 years).
It is worth mentioning that NASA will launch the satellite
NuSTAR (Nuclear Spectroscopic Telescope Array) to study
44Ti production in CCSNe. The detector will be able to
map out the 44Ti distribution of the supernova remnant
Cassiopeia A and can get velocity distributions of the 44Ti
in SN 1987A. By comparing detailed modeling of the SN
nucleosynthesis in the context of 2D and 3D models (e.g.,
[234, 235]), these are expected to provide both direct probes
of the explosion asymmetry.

Ever since SN1987A, challenges to the classical spherical
modeling [119, 221, 236, 237] have been built also in the SN
nucleosynthesis (likewise in the explosion theory and GWs
mentioned so far). For many years it has been customary
to simulate explosions and the effects of the shock wave on
the explosive nucleosynthesis by igniting a thermal bomb in
the star’s interior or by initiating the explosion by a strong
push with a piston. 2D simulations with manually imparted
asymmetries showed that bipolar explosion scenarios could
account for enhanced 44Ti synthesis along the poles as
indicated in SN1987A (e.g., [35]). More recently, 3D effects
have been more elaborately studied ([238], see also [239])
as well as the impacts of different explosions by employing
a number of progenitors [240] or by assuming a jet-like

Einstein	telescope

10	kpc

0.1	kpc

1	kpc

Adapted from Kotake et al., Adv.Astron.	2012	(2012)	428757



DSNB	detectability
• Detectability:
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Diversity:	failed supernovae
• Supported	by:

• numerical	simulations
• Problem	of	missing	red	
supergiants

• Evidence	of	a	disappearing	star	
(a	“survey	about	nothing”)

Adams et al., MNRAS,  468, 4, p. 4968-4981

4 Adams et al.

Figure 1. HST images of the region surrounding N6946-BH1.
The top row shows the WFPC2 F606W (left) and F814 (right)
progenitor images. The middle row shows the corresponding 2015
WFC3 images and the bottom row shows WFC3/IR F110W (left)
and F160W (right) images. The circles have a radius of 100. The
progenitor has dramatically faded in the optical but there is still
faint near-IR emission.

3 SED MODELING

We model the SED to constrain the physical properties (i.e.,
luminosity, temperature, mass, and recent mass loss) of the
progenitor, its outburst, and the late-time source. We will
use the results of these models to discuss whether the pro-
genitor survived the outburst and whether a failed super-
nova or some other phenomenon (e.g., stellar merger or erup-
tive mass loss) best explains the data.

Following the methods in Adams & Kochanek (2015)
and Adams et al. (2016), we model the SED of the progen-
itor, its outburst, and the late-time source using the dust
radiative transfer code dusty (Ivezic & Elitzur 1997; Ivezic
et al. 1999; Elitzur & Ivezić 2001). We use stellar models
from Castelli & Kurucz (2004) for stars with solar metal-
licity and e↵ective temperatures between 3500 and 50000 K
and revert to blackbody models when attempting to fit tem-
peratures below 3500 K. We employ a Markov Chain Monte
Carlo (MCMC) wrapper around dusty to find best-fit mod-
els and allowed parameter ranges. We adopt minimum pho-
tometric uncertainties of 10% (to account for uncertainty in
distance and metallicity and any systematic problems in the
models). We use silicate dust from Draine & Lee (1984) with

a standard MRN grain size distribution (dn/da / a�3.5 with
0.005 µm < a < 0.25 µm; Mathis et al. 1977).

The IR variability of the progenitor as well as the post-
outburst IR emission could be indicative of dust formation.
We consider two modes of mass loss: the ejection of a dusty
shell and a steady-state wind. We assume that all dust for-
mation occurs in the outflowing material once it cools to
the dust formation temperature, T

f

' 1500 K. In the shell
model, as the shell continues to expand beyond the dust for-
mation radius, R

f

, the optical depth, ⌧ , decreases, asymp-
toting at late times to ⌧ / t�2, where t is the elapsed time
since the ejection of the shell. For a thin shell, the mass of
the ejecta, M

ej

, corresponding to a given optical depth is
given by

M
ej

=
4⇡v2

ej

t2⌧V,tot(t)

V
, (1)

where v
ej

is the velocity of the ejected shell and V is the
opacity of the dust at V band. As noted in Tables 2, 3, &
4, for the shell models we generally fix the ratio between
the inner and outer edges of the dust shell, R

out

/R
in

, to 2.
The models where we allow R

out

/R
in

to vary show that the
shell thickness is relatively unconstrained by the data and
has little e↵ect on estimates of the other model properties.

For a set of post-outburst shell models (labeled as “with
dL/dt” in Table 4) we also include constraints on the late-
time variability of the source. As discussed in Adams &
Kochanek (2015), the luminosity of a surviving source of
constant intrinsic luminosity is constrained by the variabil-
ity, dLf,obs/dt, and optical depth of the source in that filter,
f , according to

L⇤,f '

1
2

t
⌧f,e↵

⇣
dLf,obs

dt

⌘
e⌧f,eff . (2)

We impose the variability constraints, dL
obs

/dt, from Table
1 on the models by adding contributions of

�2

f

=

✓
dL

f,obs/dt� dL
f,mod

/dt

�dL
f,obs/dt

◆
2

(3)

for each constrained filter, f, where the model variability,
dL

f,mod

/dt, is

dL
f,mod

dt
=

2L
f

⌧
f,e↵

t
(4)

(see Adams et al. 2016). We also consider a set of models
where we compare the evolution of the IR flux to the ex-
pansion (and cooling) of the dust shell. For these models we
compute the �2 of a given MCMC step for the latest photo-
metric constraints. We infer a shell expansion velocity, v

ej

,
based on the elapsed time, t, and inner shell edge, R

in

, of
the model. We then extrapolate the model back to an earlier
post-outburst epoch with SST observations using this v

ej

to
find the appropriate R

in

for the earlier epoch, generating a
new dusty model with the optical depth, ⌧ , expected from
a ⌧ / t�2 scaling, and include the �2 for this extrapolated
model in the MCMC step.

For the wind scenario, the inner edge of the dust is set
by the formation radius R

f

and we allow the thickness of
the dust ‘shell’ to vary. Since the optical depth of a wind
(or shell) is dominated by the inner edge, the results are
usually insensitive to the thickness R

out

/R
in

. The mass-loss
rate needed to produce a given optical depth is

Before

After

Horiuchi et	al.,	MNRAS	Lett.	445	(2014)	L99
Kochanek,	ApJ 785	(2014)	28
Kochanek et	al.	ApJ 684	(2008)	1336
Adams	et	al.,	MNRAS,		468,	4,	p.	4968-4981



Presupernova evolution
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• β-processes	important	in	detectable	window!
• few	isotopes	contribute	to	most	of	signal

• Importance	of	medium-mass	species:	Al,	P,	Na,	Ne,…
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FIG. 3: Neutrino spectra for di↵erent processes, for the sample points (c1), (c2) and (s2) in Table II (from top to bottom, in the order they
appear in the table), and for ⌫e (left column) and ⌫̄e (right column). The detectable part of the spectrum is shown with light background.
Relevant thermodynamic quantities are listed, with units as reported in Table II.

30P 31S

32P

~	center	of	star,	t=-107	d

K	.M.	Patton.	C.	Lunardini,	R.	Farmer	and	F.	X.	Timmes,	
ApJ	851	(2017)	no.1,	6 ; ApJ.	840	(2017)	no.1,	2



• Main	contributing	isotopes	:	
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FIG. 3: The time evolution of the neutrino flux, di↵erential in energy, at selected energies. The contributions of the thermal and beta processes
are shown separately.

t (hrs) total ⌫e E=2 MeV ⌫e total ⌫̄e E=2 MeV ⌫̄e

-12.01 55Co, 53Fe, 56Ni, 54Fe, 57Ni 55Co, 56Ni, 57Ni, 54Fe, 52Fe 28Al, 24Na, 27Mg, 60Co, 31Si 28Al, 24Na, 60Co, 32P, 23Ne
-2.2 54Fe, 55Fe, 55Co, 53Fe, 57Co 55Fe, 55Co, 54Fe, 57Co, 57Ni 28Al, 56Mn, 27Mg, 60Co, 54Mn 28Al, 56Mn, 60Co, 55Mn, 54Mn

-0.99 55Fe, 54Fe, 56Ni, 57Co, 55Co 55Fe, 55Co, 57Co, 54Fe, 56Ni 56Mn, 60Co, 28Al, 52V, 55Mn 56Mn, 60Co, 28Al, 52V, 55Mn
0 55Fe, 56Fe, 1H, 57Fe, 54Mn 55Fe, 1H, 56Fe, 57Fe, 54Fe 56Mn, 62Co, 55Cr, 52V, 53V 56Mn, 62Co, 55Cr, 52V, 53V

their e↵ect were found to vary from negligible to strong
depending on the mass hierarchy, on the matter density
near the production region and on the relative strength
of the original fluxes F0

↵. The ⌫e and ⌫̄e survival proba-
bilities after collective oscillations typically have a step-
like form as a function of the neutrino energy (“spectral

split” or swap) [? ]. (say that probably collective ef-
fects are negligible due to the low luminosity... )

2. resonant flavor conversion inside the star, driven by
coherent scattering on matter [? ]. Two sepa-
rate resonances take place at matter densities ⇢H ⇠
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split” or swap) [? ]. (say that probably collective ef-
fects are negligible due to the low luminosity... )

2. resonant flavor conversion inside the star, driven by
coherent scattering on matter [? ]. Two sepa-
rate resonances take place at matter densities ⇢H ⇠



Number	of	events	(preliminary)	

8

detector composition mass interval Nel
� Nel NCC

� NCC Ntot = Nel + NCC

JUNO CnH2n 17 kt Ee � 0.5 MeV 9.3 39.0 0 12.3 51.3
[4.1] [ 28.8] [ 0] 36.9 [65.8]

SuperKamiokande H2O 22.5 kt Ee � 4.5 MeV 0.11 0.17 0 0.65 0.82
[0.04] [0.08 ] [0] [1.9] [2.0]

DUNE LAr 40 kt E � 5 MeV 0.07 0.1 0.64 0.91 1.0
0.03 0.05 [ 0.04] [ 0.17 ] [0.22 ]

TABLE II: Numbers of events expected in the two hours prior to collapse, for a presupernova at distance d = 1 kpc with mass M = 25 M� and
the inverted mass hierarchy. The numbers in brackets refer to the normal mass hierarchy. .. (add parameters, etc., ) (Note: the numbers here
have about a 50% error due to the approximations used in the calculation. ) The results for Betelgeuse (d = 0.2 kpc) can be obtained by
rescaling by a factor of 25. (omit?) (check detector masses again)

contribute to the presupernova ⌫e flux in the detectable energy
window, (... continue... say what they are and if they are
the most abundant, or rare ones, etc.. ). The possibility that
neutrino detectors may test the physics of these isotopes is of
great interest (... justify the interest, otherwise it is just an
emotional statement.)

In closing, we stress that our calculation used the best avail-
able instruments: a state of the art stellar evolution code, com-
bined with the most up-to-date studies of nuclear rates and
beta spectra. Still, these instruments are a↵ected by uncer-
tainties, which, naturally, a↵ect the results in this paper. In
particular, while total emissivities are relatively robust (?), it
is likely that the highest energy tails of the neutrino spectrum,
in the detectable window, be very sensitive to the details of the
calculation, i.e., the temperature profile of the star, the nuclear
abundances and the quantities in the nuclear tables we have
used. (be more precise here.) Specifically for neutrino spec-
tra, a source of error lies in the single-strength approximation
that is adopted here (sec. II). (say better... how to call it? )
A very recent paper [? ], which appeared while this work was
being finalized, presents an exploratory study of this error and
finds.... (continue... ). A systematic extension of this result

to the many isotopes included in MESA would be highly de-
sirable to improve our results. Another interesting addition to
the code would be the contribution of neutrino pair production
.... (continue and cite both Wendell’s and Guo’s paper... if
public, of course!!! ), which is currently omitted in MESA.

Until these important improvements become available, our
results have to be interpreted conservatively, as a proof of the
possibility that current and near future detectors might be able
to test the models of �p in a presupernova. (find a better way
to say this... continue and finish on a high note. )

Acknowledgments

We are deeply grateful to F. X. Timmes for very insight-
ful comments and encouragement, and thank K. Zuber and
Wendell Misch (is this ok?) for fruitful discussion. We also
acknowledge the National Science Foundation grant num-
ber PHY-1205745, and the Department of Energy award DE-
SC0015406.

el	=	elastic	scattering	on	electrons
CC		=	Charged	Current	on	nuclei
β	=	contribution	of	neutrinos	from	beta	processes

..		 =	results	for	IH
[	..	]	=	results	for	NH

2	hours	pre-collapse,	D	=	1	kpc (for	Betelgeuse	:	multiply	by	25)

[        ]
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Figure 11: Gravitational waveforms from the sum of neutrinos and matter motions (left) and only from neutrinos (right) for a 3D model
with rotation (from [210]). The time is measured from the epoch when the neutrino luminosity is injected from the surface of the neutrino
sphere. For this 3D model with rotation, the rotational flow is imposed to advect to the PNS surface at around t = 400 ms. The supernova is
assumed to be located at the distance of 10 kpc.

(a) (b)

Figure 12: Partial cutaway of the entropy isosurfaces and the velocity vectors on the cutting plane for a 3D model that includes rotation. Left
and right panels are for the equatorial and polar observer, respectively. The insets show the gravitational waveforms with “+” on each curves
representing the time of the snapshot. Note that the colors of the curves are taken to be the same as the top panel of Figure 10. This figure is
taken from [210].

are different from the ones expected in the other candidate
mechanisms, such as the MHD mechanism (e.g., [219]) and
the acoustic mechanism [193]. Therefore the detection of
such signals could be expected to provide an important probe
into the explosion mechanism (e.g., [23, 220]).

We like to draw a caution that most of the 3D models
cut out the PNS and the neutrino transport is approximated
by a simple light-bulb scheme [210] or by the gray transport
scheme [211]. Needless to say, these exploratory approaches
are but the very first step to model the neutrino-heating

explosion and to study the resulting GWs. As already
mentioned, the excision of the central regions inside PNSs
truncates the feedback between the mass accretion to the
PNS and the resulting neutrino luminosity, which should
affect the features of the neutrino GWs. By the cutout, effi-
cient GW emission of the oscillating neutron star [193] and
nonaxisymmetric instabilities [183, 184] of the PNSs, and the
enhanced neutrino emissions inside the PNSs [197] cannot
be treated in principle. To elucidate the GW signatures in a
more quantitative manner, full 3D simulations with spectral
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has been first realized in linear theory via the direct solution of the inhomogeneous
wave equation by Epstein [81] (but, see also Turner’s independent derivation in the
zero-frequency limit [82]).

Burrows & Hayes [123] and Müller & Janka [124] were the first authors to
implement the formalism. It has since been employed in a number of other studies
[23, 35, 85, 97, 98, 179, 215]. In the following, we present a short overview on the
formalism as used by [123, 124] in axisymmetry. More details and the generalization
to 3D can be found in [35, 124].

For axial symmetry, [123, 124] write the dimensionless GW strain for an observer
positioned in the equatorial plane as

hTT
+,eq(t) =

2G

c4D

∫ t−D/c

−∞

α(t′)Lν(t′)dt′ , (3)

where Lν(t) is the total neutrino luminosity and α(t) is the instantaneous neutrino
radiation anisotropy that includes the transverse-traceless projections [124]. It is
defined as

α(t) =
1

Lν(t)

∫

4π
Ψ(ϑ′, ϕ′)

dLν(Ω⃗′, t)

dΩ′
dΩ′ , (4)

where dLν(Ω⃗, t)/dΩ is the energy radiated at time t per unit of time and per unit of
solid angle into direction Ω⃗ with

Lν(t) =

∫

4π

dLν(Ω⃗′, t)

dΩ′
dΩ′ . (5)

Ψ(ϑ, ϕ) represents the angle dependent factors in terms of source coordinate system
angles ϑ and ϕ and depends on the particular GW polarization and the observer
position relative to the source. In axisymmetry, hTT

× = 0 everywhere, and hTT
+ = 0

along the axis of symmetry. For an observer located in the equatorial plane, observing
the + GW polarization, Ψ(ϑ, ϕ) is given [35, 124] by

Ψ(ϑ, ϕ) = (1 + sin ϑ cosϕ)
cos2 ϑ − sin2 ϑ sin2 ϕ

cos2 ϑ + sin2 ϑ sin2 ϕ
. (6)

In axisymmetry, there is no ϕ dependence of the luminosity. By integrating Ψ(ϑ, ϕ)
over ϕ, equations 4 and 6 combine to [35, 85],

α(t) =
2π

Lν(t)

∫ π

0
sin θ′(−1 + 2| cos θ′|)

dLν(θ′, t)

dθ′
dθ′ . (7)

Note that the GW signal due to neutrinos observed at time t + D/c contains
contributions from anisotropies in the neutrino radiation field at all times prior t. This
leads to a memory effect in the GW signal, leaving behind a constant (“DC”) offset
after the anisotropic neutrino emission subsides. Largely-aspherical mass ejection can
lead to a similar GW memory (see section 9). The implications and detectability of
such GW bursts with memory were discussed in [34, 216].

In the context of massive star collapse and core-collapse SNe, anisotropic neutrino
radiation and the associated emission of GWs may arise (a) from rotationally-deformed
PNSs [35, 42, 97, 215], (b) from convective overturn and SASI [23, 42, 85, 97, 98, 124],
and (c) from global asymmetries in the (precollapse) matter distribution [123, 179].
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Daughters	of	SN:	collapsars,	mergers
• Neutrinos	from	cooling	of	
accretion	disks	due	to	
• Failed	SN	with	fast	rotation	
(collapsars)

• Neutron	Star-Neutron	Star	
mergers

• Neutron	Star-Black	hole	mergers

• Contribution	to	diffuse	flux	
can	be	high	in	extreme	cases

Black	Hole	Accretion	Disk	Diffuse	Neutrino	Background
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