Atmospheric Long-Lived Particle Searches

Pilar Coloma IFIC, UV/CSIC

Based on: Argüelles, Coloma, Hernandez, Muñoz, 1910.12839 Coloma, Hernandez, Muñoz, Shoemaker, 1911.09129

Brookhaven Neutrino Theory Virtual Seminars April 6th 2019

Outline

- 1) Introduction/motivation
- 2) Heavy neutral leptons
 - Sensitivity to general (non-minimal) models
 - Sensitivity to the minimal scenario
- 3) Dark photons, and a B-L model

Where is the new physics?

Neutrino masses

Majorana or Dirac?

New fields are required to give neutrinos a mass. Two main ways: 1) Dirac mass: as for the rest of fermions in the SM

$$Y_{\nu}\overline{L}_{L}\widetilde{\phi}\nu_{R} \to m_{\nu}\overline{\nu}_{L}\nu_{R}$$

 $Y_{\nu} \lesssim 10^{-12}$

Majorana or Dirac?

New fields are required to give neutrinos a mass. Two main ways: 1) Dirac mass: as for the rest of fermions in the SM

$$Y_{\nu}\overline{L}_{L}\widetilde{\phi}\nu_{R} \to m_{\nu}\overline{\nu}_{L}\nu_{R}$$

2) A Majorana mass. For example:

$$Y_{\nu}\bar{L}_{L}\widetilde{\phi}\nu_{R} + \frac{1}{2}M\overline{\nu}_{R}^{c}\nu_{R}$$

Majorana or Dirac?

New fields are required to give neutrinos a mass. Two main ways: 1) Dirac mass: as for the rest of fermions in the SM

$$Y_{\nu}\overline{L}_{L}\widetilde{\phi}\nu_{R} \to m_{\nu}\overline{\nu}_{L}\nu_{R}$$

2) A Majorana mass. For example:

$$Y_{\nu}\bar{L}_{L}\widetilde{\phi}\nu_{R} + \frac{1}{2}M\overline{\nu}_{R}^{c}\nu_{R} \qquad (I\!\!\!/)$$

$$\stackrel{|}{\stackrel{\scriptstyle N}{\Rightarrow}}Y_{\nu}v$$

$$\stackrel{|}{\stackrel{\scriptstyle N}{=}}m_{\nu} = Y_{\nu}^{\dagger}M^{-1}Y_{\nu}v^{2}$$

Type I Seesaw:

Minkowski '77, Gell-Mann, Ramond, Slansky '79, Yanagida '79, Mohapatra, Senjanovic '80

Scale of new physics

Why the GeV scale?

Pilar Coloma - IFIC

Why a low-scale seesaw?

Vissani, hep-ph/9709409 Casas, Espinosa, Hidalgo, hep-ph/0410298 ₁₁

Direct searches for GeV neutrinos $N \xrightarrow{\alpha U^2} \ell_{\alpha}, \nu_{\alpha}$ $Z, W \xrightarrow{\alpha U^2} \ell, \nu, M$ $M = \pi, K, \eta, \omega, ...$

- Direct searches can be divided into two main categories:
 - Peak searches
 - Displaced decays: fixed target experiments, colliders, ...

$$c\tau \sim \text{few} \left(\frac{\text{GeV}}{m_N}\right)^5 \left(\frac{10^{-4}}{U^2}\right) \text{ m}$$

For detailed calculations of heavy neutrino decay channels see, e.g.: Ballett, Boschi, Pascoli, 1905.00284; Bondarenko et al, 1805.08567

Pilar Coloma - IFIC

Direct searches for GeV neutrinos

Figure from Drewes and Garbrecht, 1502.00477 (See also Bryman and Shrock, 1904.06787 and 1909.11198, Ruchayskiy and Ivashko, 1112.3319, Atre et al, 0901.3589)

Further motivation...?

Figure from Fischer, Hernandez-Cabezudo, Schwetz, 1909.09561

Ballett, Pascoli, Ross-Lonergan, 1808.02915 Bertuzzo, Jana, Machado, Zukanovich Funchal, 1807.09877 Dentler, Esteban, Kopp, Machado, 1911.01427 deGouvea, Peres, Prakash, Stenico, 1911.01447 Gninenko, 1009.5536 and 0902.3802 Palomares-Ruiz, Pascoli, Schwetz, hep-ph/0505216

Signal computation

Production profile for the long-lived particle:

$$\frac{d\Pi_A}{dEd\cos\theta d\ell} = \sum_{ch} \int_{E_P^{\min}}^{E_P^{\max}} dE_P \frac{1}{\gamma_P \beta_P c\tau_P} \left[\frac{d\Phi_P(E_P,\cos\theta)}{dE_P d\cos\theta} \right] \frac{dn_{ch}(E_P,E)}{dE}$$

See, e.g., Gondolo, Ingleman and Thunman, hep-ph/9505417

From there, we get the flux as:

$$\frac{d\Phi_A}{dEd\cos\theta} = \int_0^{\ell_{\max}} d\ell \frac{d\Pi_A}{dEd\cos\theta d\ell} \left[e^{-\frac{\ell}{L_{decay}}} \right] \qquad (A \equiv V, N)$$

Pilar Coloma - IFIC

Signal computation

Pilar Coloma - IFIC

Backgrounds and data

Events in 641 days

 \rightarrow Maximum sensitivity if decay length *in the lab frame* is O(10) km

HNL above the kaon mass

$$\mathcal{L}_N = \mathcal{L}_{SM} + \sum_j i \bar{N}_j \gamma^\mu \partial_\mu N_j - \left(Y_{\alpha j} \bar{L}_\alpha \tilde{\Phi} N_j + \frac{m_{N_j}}{2} \bar{N}_j N_j^c \right)$$

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839

HNL production per parent

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839 Coloma, Hernandez, Muñoz, Shoemaker, 1911.09129

HNL below the kaon mass

Coloma, Hernandez, Muñoz, Shoemaker, 1911.09129 (see also Asaka and Watanabe, 1202.0725, Kusenko, Pascoli and Semikoz, hep-ph/0405198

HNL below the kaon mass

Coloma, Hernandez, Muñoz, Shoemaker, 1911.09129

Dark photons

Where is the new physics?

Pilar Coloma - IFIC

Dark photons: kinetic mixing

Dark photons: kinetic mixing

Pilar Coloma - IFIC

Dark photons: B-L model

Summary

- Atmospheric neutrino detectors are well-suited to search for the decay products of long-lived particles produced in the atmosphere
 - Optimal sensitivity for decay lengths in the range of tens of kilometers
- We have derived exclusion limits using Icecube and SK data
 - We have studied HNL, dark photons and a B-L model
 - Our limits are shown in the BR $c\tau$ plane, allowing to be easily interpreted for non-minimal scenarios
 - SK able to constrain the minimal HNL model as well, for $m_{_{\rm N}}$ below the kaon mass

Thank you!!